
www.manaraa.com

Comparing the Performance of Open Source and Proprietary Relational Database

Management Systems

Dissertation

Submitted to Northcentral University

Graduate Faculty of the School of Business and Technology Management
In Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

By

SEAN STEVEN COATES

Prescott Valley, Arizona
August 2009

www.manaraa.com

UMI Number: 3386054

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Dissertation Publishing

UMI 3386054
Copyright 2010 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

www.manaraa.com

Copyright 2009

Sean Steven Coates

www.manaraa.com

APPROVAL PAGE

Comparing the Performance of Open Source and Proprietary Relational Database

Management Systems

by

Sean Steven Coates

Approved by:

ir: James Neiman, Ph.D.

Member: Michael Ewald, Ph.D.

Member: Efosa Osayamwen, Ph.D.

P<L1>
Date

Certified by:

ujIMoi
Date

www.manaraa.com

ABSTRACT

The relative performance and scalability of open source and proprietary relational

database systems (RDBMS) were examined using a newly constructed suite of

benchmark case tests. Technology managers can save money on software licenses if they

switch to open source products, but many have not done so because of concerns about the

performance of open source products relative to commercial products. The relative

performance and scalability of some of the most popular open source and proprietary

RDBMS products was quantitatively compared. A benchmark case was constructed to

measure three aspects of RDBMS performance: batch load, transaction processing, and

report generation. The benchmark scores for proprietary database products were higher

than for open source database products. The differences in performance and scalability

were not enough to justify the much higher cost of proprietary database products except

in cases where the cost of a proprietary solution would not be a major to an individual

technology manager. Future researchers run the benchmark on a different platform and

examine the performance of newer versions of the RDBMS products reviewed here or

different database products.

IV

www.manaraa.com

TABLE OF CONTENTS

LIST OF TABLES vii

LIST OF FIGURES viii

CHAPTER 1: INTRODUCTION 1

Background 1
Problem Statement 2
Purpose 2
Theoretical Framework 3
Research Questions 4
Nature of the Study 5
Significance of the Study 6
Definitions 8
Summary 11

CHAPTER 2: LITERATURE REVIEW 14

Open Source Software 14
Relational Database Management Systems 17
Database Benchmarks 22
Summary 25

CHAPTER 3: RESEARCH METHOD 27

Research Methods and Design 28
Participants 48
Materials/Instruments 48
Operational Definition of Variables 50
Data Collection, Processing, and Analysis 54
Methodological Assumptions, Limitations, and Delimitations : 62
Ethical Assurances ..64
Summary 65

CHAPTER 4: FINDINGS 66

Results 67
Evaluation of Findings 76
Summary 82

CHAPTER 5: IMPLICATIONS, RECOMMENDATIONS, AND CONCLUSIONS 84

Implications 84
Recommendations 88
Conclusions 92

REFERENCES 93

APPENDIXES 98

Appendix A: Generation Script for States 99
Appendix B: Generation Script for Departments 100

v

www.manaraa.com

Appendix C: Generation Script for Stores 101
Appendix D: Generation Script for Department Discounts 102
Appendix E: Generation Script for Shipping 103
Appendix F: Generation Script for Items 104
Appendix G: Generation Script for Customer Accounts and Customer Addresses106
Appendix H: Generation Script for Item Ratings I l l
Appendix I: Generation Script for Store Inventories 113
Appendix J: Generation Script for Volume Discounts 114
Appendix K: Generation Script for Club Members 115
Appendix L: Generation Script for Transactions, Transaction Items, and Club
Members Tables 116
Appendix M: Benchmark Script for Batch Load 122
Appendix N: Benchmark Script for Transaction Processing 129
Appendix O: Benchmark Script for Report Generation 170

VI

www.manaraa.com

LIST OF TABLES

Table 1 Construct Variables 53
Table 2 Benchmark Case Test Results for MySQL 67
Table 3 Benchmark Case Test Results for PostgreSQL 68
Table 4 Benchmark Case Test Results for Firebird 69
Table 5 Benchmark Case Test Results for the Database A 70
Table 6 Benchmark Case Test Results for the Database B 71
Table 7 Benchmark Case Test Results for the Database C 72
Table 8 Database Benchmarks for One Processor 73
Table 9 Database Benchmarks for Four Processors 74
Table 10 Scalability of the Database Systems 76

vn

www.manaraa.com

LIST OF FIGURES

Figure 1. The database schema for the database benchmark case, including table names,
field names, keys, data types, and relationships 30

Figure 2. Performance of database products when using one and four processor cores. ..78
Figure 3. Scalability of database products 79
Figure 4. Batch load performance of database products 80
Figure 5. Transaction processing performance of database products 81
Figure 6. Report generation performance of database products 82

Vlll

www.manaraa.com

1

CHAPTER 1: INTRODUCTION

The use of open source technology is having a major impact on businesses today,

as it provides technology managers with the ability to use software applications similar to

proprietary products at a fraction of the cost (Boulton, 2003; Cohen, 2003; Dickerson,

2003; Hicks, 2002; Krill, 2002; LaMonica, 2005; Silwa, 2005). One of the more

expensive proprietary software products technology managers are compelled to buy is a

relational database management system (RDBMS). There are many open source RDBMS

products available, but many technology managers feel that the proprietary products are

superior in most ways, thus justifying the large cost (Boulton, 2003). The performance

and scalability of proprietary and open source RDBMS products available today was

compared in this research. A process to compare the performance of RDBMS products

was designed and developed using the same operating system and server hardware. To

compare the RDBMS products, benchmark tests were created and used. An analysis of

the benchmark testing results was performed to determine, cost factors aside, whether

open source database systems can perform as well as proprietary database systems when

executing common tasks.

Background

Technology managers may be able to reduce capital and operating expenditures

by using open source RDBMS products, but they do not know how well the open source

RDBMS products available today compare to the proprietary RDBMS products.

Proprietary RDBMS products cost between $5,000 and $40,000 per processor for the

software license, while open source products do not require a software license (Boulton,

2003). The more servers and processors a company has, the greater the potential savings

www.manaraa.com

2

by using open source RDBMS products. For example, in an environment with 100

servers with two processors each running database software that costs $25,000 per

processor, the cost of the software would be $5,000,000 and annual maintenance fees,

typically 20%, would run $1,000,000 per year, a significant cost for most firms. The

switch to open source products can only be justified if the performance and scalability of

the open source RDBMS products is close to or better than the proprietary RDBMS

products.

Problem Statement

The problem to be addressed is how to compare the performance and scalability

of open source and proprietary RDBMS products. Technology managers would like to be

able to cut costs RDBMS licensing by switching to open source, but this can only be

justified if the performance of open source products is comparable. Over 67% of

technology managers seek out open source solutions to save on costs (D'Agostino, 2005).

Technology managers facing this decision need a method of comparing open source and

proprietary database products. Historically, researchers who put together benchmarks to

measure database performance focused on either open source or proprietary RDBMS

products, depending on their target audience. To compare both, a new analysis was

needed. This required the construction of a new benchmark, a suite of tests flexible

enough that it could be run a wide range of open source and proprietary database systems.

Purpose

The primary purpose of this quantitative study was to determine if technology

managers should consider open source database systems acceptable substitutes for

proprietary database systems based on the criteria of relative performance and scalability,

www.manaraa.com

3

which were measured by running a benchmark case against several proprietary and open

source database systems and comparing the results. If an analysis of the benchmark tests

shows that open source databases can significantly outperform or perform as well as

proprietary databases, then information technology managers should consider open

source databases for all applications where performance is a primary concern. If the

analysis shows that open source databases do not outperform the proprietary databases,

then technology managers may want to avoid open source databases in situations where

performance is a primary concern. Finally, the performance of individual open source

databases was compared to other open source databases, to show which underperforming

database systems have areas for improvement.

Theoretical Framework

There are few published articles that measure the performance of open source

RDBMS products. One of the most widely published results was run by Dyck (2002), in

which he compared several database products. One of the problems with Dyck's testing is

that he did not hold his external variables constant; there were different operating systems

involved, and different methods of accessing the database.

The best example of constructing a benchmark was done by DeWitt (1993) with

his Wisconsin benchmark. DeWitt's work eventually led to the development of the TPC-

A benchmark (Transaction Performance Processing Council, 1992). The TPC-A and

other benchmarks created by the Transaction Performance Processing Council do not

reflect real-life database activity, as they are not modeled after a real-life application.

Strandell (2003) developed a benchmark based on activities in the

telecommunications industry, which resulted in a highly specialized benchmark that was

www.manaraa.com

4

not useful for applications outside that industry. Still, he was very helpful in showing the

kind of work an individual could put together, as most benchmarks today are developed

by large organizations like TPC.

This research addressed these concerns through its unique design. All of the

testing was performed on a single platform and operating system, reducing the number of

external variables. The benchmark suite simulated an electronic commerce application,

providing a more realistic load to the databases tested. The benchmark suite used very

general terms, which could easily be applied to a wide range of industries. These choices

were made to improve upon previous efforts at database benchmarks without making the

system overly complex.

Research Questions

Technology managers would like to cut costs by using open source RDBMS

products, but they do not know how well the open source RDBMS products available

today compare to the proprietary RDBMS products (Florescu & Kossman, 2009).

Proprietary RDBMS products cost between $5,000 and $40,000 per processor for the

software license, while open source products do not require a software license (Boulton,

2003). Open source products are only a viable alternative if their performance and

scalability are comparable to the proprietary products. In order to enable this comparison,

a benchmark case was created and run against several popular open source and

proprietary RDBMS products. The results were analyzed to find a measure of the relative

performance and scalability of open source and proprietary RDBMS products, answering

the following research questions:

www.manaraa.com

5

1. On a server with one processor core, to what extent, if any, does the

performance of open source RDBMS products, on average, equal or exceed

the performance of proprietary RDBMS products, on average, when run on

the same operating system and hardware?

2. On a server with four processor cores, to what extent, if any, does the

performance of open source RDBMS products, on average, equal or exceed

the performance of proprietary RDBMS products, on average, when run on

the same operating system and hardware?

3. To what extent, if any, does the scalability, from one processor to four

processor cores, of open source RDBMS products, on average, equal or

exceed the scalability of proprietary RDBMS products, on average, when run

on the same operating system and hardware?

Nature of the Study

The relative performance and scalability of open source and proprietary RDBMS

products was compared. This comparison required the acquisition of the database

products being examined, the testing platform, a data model, test data, and a suite of

benchmark case tests. For the proprietary products, evaluation licenses were acquired.

The open source products were freely available. The testing platform was a small server

running Linux®, and the same operating system and server configuration was used for all

of the products tested. The data model, test data, and benchmark case tests were

constructed as a part this research.

The dependent variables were the individual database products being reviewed

(Xd), the number of active processor cores in the system during a test (Xp), the type of

www.manaraa.com

6

test (Xt) and the number of the individual test run (Xr). For each combination of these

dependent variables, a duration was measured (Yd,p,t,r). These durations were then

averaged and combined to provide benchmark scores. The scores were normalized for

simpler comparison.

All of the tests were performed using the same physical server equipment, to

provide a constant and fair environment for comparison. The server host was restarted

before each test to ensure that no other processes would be competing for server

resources, and that no memory of prior tests would be cached in the system RAM. Each

benchmark case started with the same data, read in from the same flat files used for all of

the database products.

Significance of the Study

There have been few published reports comparing the performance of RDBMS

products, so having a new comparison is beneficial to those technology managers who

have to select one of these products for a new application. This study also includes the

details of the construction of the benchmark suite so that technology managers could run

the tests on their own systems. The methodology presented here can also be adapted to

newer versions of the RDBMS products, which provides technology managers with the

ability to create more current numbers.

For those technology managers facing budgetary challenges, the results presented

in this research will provide an estimation of the kind of performance they can expect if

they switch from expensive proprietary solutions to the much cheaper open source

solutions. Even if open source database products are somewhat slower than proprietary

www.manaraa.com

7

products, the performance may be acceptable to technology managers for some

applications.

Assuming that the open source database products performed well in the

benchmark results, information technology managers should consider open source

database products more seriously when it comes time to select a database for a new

application. Today, many managers do not consider open source databases because they

simply assume they are inferior, and that part of the cost of the proprietary products is for

higher performance (Biggs, 2002). If RDBMS products being proprietary are not a

reliable indicator of higher performance, then many managers could potentially save

hundreds of thousands of dollars, or more, on licensing fees by switching to open source

databases. Technology managers that are trying to implement large computing grids and

facing high per-processor or per-core licensing fees could save even more money. Open

source database products are not completely free, as there are the costs of third-party

support contracts, training, and possibly new personnel. The cost savings is in the license

fees, which can be substantial in large environments.

Technology managers at many companies have adopted Linux, an open source

operating system, and are becoming comfortable with other open source technology

(Silwa, 2005). Some managers are even beginning to deploy open source database

systems like MySQL and PostgreSQL in order to save on licensing costs (Mears, 2005).

Technology managers would also benefit from examining the results of a benchmark case

run on a variety of open source and proprietary database systems. Technology managers

in general should be interested because the licensing costs of proprietary database

systems are rather significant; in many instances, the investment in database technology

www.manaraa.com

8

is so great that costs of switching to a different proprietary platform are insurmountable

(Dyck, 2002).

An examination of the benchmark case results also measures the scalability of the

database systems, which is the rate of improvement in performance as processor cores are

added to the system. Scalability is important because open-source databases do not have

per-processor licenses fees, and for some managers it may be, for example, more cost

efficient to run an open source database system with four processors than a proprietary

system with two processors. With the newly available Intel® (Alfs, 2007) and AMD™

(AMD, 2006) quad-core processors, ordinary systems will have 16 cores or more

(Gillespie, 2007). It becomes apparent that the cost of licensing for proprietary databases

quickly surpasses that of the hardware. If the performance of open source database

systems can be shown to scale up with the number of processors on the system, then it

would provide another good reason for technology managers to consider them as an

acceptable replacement for expensive proprietary solutions.

While technology managers are always concerned with software expenses, using

open source alternatives to traditional proprietary RDBMS products can only be

acceptable if the performance and scalability of the open source products is comparable

to the competing proprietary products.

Definitions

Included are definitions of some key terms used in this research. While some of

the definitions may be common, specific meanings are included here to avoid any

uncertainty. Most of the terms are related to database technologies.

www.manaraa.com

9

RDBMS. A relational database management system (RDBMS) is a system for

storing data where data pertaining to an entity is stored in a table, and data for each

instance of such entity is stored as a row in the table. Furthermore, attributes describing

the entity are stored in columns that can be addressed independently, enabling data in

tables to be joined together based on relations which are based on similar columns

between tables (Elmasri & Navathe, 1994). RDBMS products are defined as belonging to

one of two groups: proprietary and open source. Both types of products have commercial

businesses built around them based on the support of their products. Using the relations

between the tables, database queries can be formed by joining tables together based on

the relations and the constraints of the query. Database users perform queries by using

SQL, or structured query language. All RDBMS products use SQL to query their data

(Silberschatz, Korth, & Sudarshan, 2003).

Processor core. A processor core is a processing unit within a computer,

recognized by the operating system as a separate processor. Processors are generally

capable of performing calculations independently of each other (Silbertschatz, Korth, and

Sudarshan, 2003).

Open source. The authors of open source products make their source code freely

available, which means that there is no cost to acquire the software (Chen, 2002).

Proprietary. The developers of proprietary products generally do not make their

source available, and they charge a license fee for their software (Donston, 2002).

Speedup. An important factor to consider when comparing databases systems is

the difference between speedup and scaleup. Basically, speedup is a measure of how a

system can complete the same tasks in less time by adding processor cores to it. Linear

www.manaraa.com

10

speedup is the desirable goal here, with each additional processor core reducing the time

spent by a proportional amount (DeWitt, 1993).

Scaleup. Scaleup is a measure of how much more data can be processed in the

same amount of time when processors are added to the server (DeWitt, 1993).

Benchmark case. A benchmark case is defined as a set of database activities that

are performed. A benchmark case test is a particular run of the activities in a benchmark

case. The duration of a benchmark case test is the time it takes to perform all of the

necessary activities in the case (Gray, 1993).

Benchmark case test. A benchmark case test is an individual test within the set of

tests that make up the benchmark case (Gray, 1993).

Benchmark case test run. An individual run of a test. A test is typically run

multiple times (Gray, 1993).

Performance. Performance is defined as the average duration of the benchmark

case tests for a particular server configuration (Gray, 1993).

Scalability. Scalability is the ratio between the performance of a system in one

configuration and the performance of a system in a lesser configuration (Gray, 1993).

Primary key. A database table is made up of rows, with each row representing an

instance of an entity; for example, in a table of user accounts, each row would represent

one user account. Individual rows are identified with a unique identifier that is made up

of one or more columns of data known as the primary key.

Foreign key. When one data in one table refers to data in another table, it has a

relation through a foreign key. The foreign key refers to the primary key in the other

table. For example, in a table of transactions, one of the columns may refer to the user

www.manaraa.com

11

account associated with the transaction; instead of containing all of the user account

information, one can put in a foreign key that refers to an entry the user accounts table.

Foreign keys are not unique; for example, multiple transactions can refer to the same user

account.

Summary

A benchmark case was constructed that measured the performance of a database

product in three different areas: database load, transaction processing, and generation of

reports for decision support. The benchmark case was run for several RDBMS products,

all of which will use the same hardware and operating system in order that the hardware

and operating system would not be factors in the results of the comparison.

The costs of the various database products were not addressed because the costs

vary depending on the user. For example, technology managers in most companies would

find installing several copies of Oracle® to be very expensive, as the licensing and

support costs are rather high compared to other products (Pallatto, 2005). In addition, the

same managers may find it difficult and expensive to locate and hire experienced

Oracle® database administrators, due to the shortage of trained personnel (Chabrow,

2008). Technology managers in other companies may already have an Oracle® site

license or extra licenses available, greatly reducing the incremental cost of installing

another Oracle® database. The actual cost of database product licenses, maintenance, and

the personnel to support them will vary from firm to firm. The same is true for open

source databases; some firms may have people already on the staff capable of supporting

the product, while managers at other firms would need to purchase maintenance

agreements from third party organizations to support the database. Therefore, the cost of

www.manaraa.com

12

the database is not be a factor in the measurement of the performance of RDBMS

products in this research.

When a database vendor does not have a well-performing database, their

marketing managers may create price-to-performance measures to use in their advertising

(Register Research, 2003), but for the reasons just discussed, their measures can be

misleading at best. Another tactic used by marketing managers at a database vendor is to

only report portions of a benchmark result that look favorable on their products (Caniano,

1988; Scannell, 2000). Thus, one generally cannot trust benchmark reports from the

vendors themselves, and it is best if the tests are run by an independent party.

A new way to measure the relative performance and scalability of RDBMS

products was provided through the construction of a benchmark case. How open source

and proprietary RDBMS products currently compare was shown by running the tests in

the benchmark case against some of the more popular database products available in the

market today. Both open source and proprietary RDBMS products continue to evolve and

improve, however, and will perform differently in the future. In addition, the performance

of individual database products will be different on other hardware platforms and

different operating systems. Future researchers may do a similar analysis using a different

environment. In particular, computers in the future will have eight or more processor

cores, exponentially more memory (Coffee, 2005), and access to solid state storage

technology (Mitchell, 2006).

To assist technology managers who are considering open source RDBMS

products, a benchmark case was run and the results analyzed to measure to what extent, if

any, the proprietary RDBMS products exceed the open source RDBMS products in the

www.manaraa.com

13

areas of relative performance and scalability. The details about the construction and use

of the benchmark will provide technology managers with the ability to adapt the

benchmark suite to their own systems and applications. If the performance of open source

database products is acceptable to technology managers, they could realize significant

cost savings by selecting open source RDBMS products over proprietary RDBMS

products.

www.manaraa.com

14

CHAPTER 2: LITERATURE REVIEW

The literature review is divided into three major sections: open source software,

relational database management systems, and database benchmarks. There is little

published literature regarding database benchmarks, but what is available is listed here.

Open Source Software

In recent years, open source software has become more readily accepted for use in

the enterprise by technology managers of all sizes of companies, as was shown in a recent

survey (D'Agostino, 2005). For the survey, 235 senior information technology executives

were questioned about the use of open source software at their companies. The primary

reason for using open source software was for the lowered costs, according to 67% of the

respondents. It was also reported that 72% of executives planned to expand the use of

open source software at their companies. The most widely used open source package was

the Linux operating system (by 87%> of respondents), followed by the webserver Apache

(65%), the MySQL RDBMS (58%), and the Firefox web browser (48%). Cost savings

was not the only motivation for using open source applications; 64% of executives

surveyed felt that the use of open source software in their enterprise had the potential to

give them a distinct competitive advantage over their rival firms. Other reasons for using

open source software included avoiding vendor lock-in, improved security, better

functionality, and the ease of customization. Furthermore, 57% of technology executives

found the quality, capability and ease of use of open source systems to be so good that

they would be willing to pay for them if they were proprietary products.

There have been hundreds of open source software projects, many of which have

been successful at gaining popularity and becoming widely used. Typically, an open

www.manaraa.com

15

source software project gets started by an individual need, or as Raymond (2001) put it,

"Every good work of software starts by scratching a developer's itch." Raymond told the

story of the open source operating system Linux, from its beginnings as Linus Torvald's

pet project to the modern operating system in use at most companies today. According to

Raymond, when there is a strong enough perceived need for a product, a community of

developers can gather and work in concert to develop open source software that rivals the

finest commercial products. By leveraging the technologies that ease communication and

collaboration over the Internet, open source projects frequently find themselves drawing

upon a global pool of developers with similar interests.

Open source software typically has no license fees, making it an attractive option

to technology managers when making purchasing decisions under budget constraints.

Over the past few years, open source products have been appearing more frequently in

large enterprise organizations for several reasons. The most common reason is the need to

cut licensing costs, making it easier to justify the consideration of open source

alternatives to expensive proprietary software (Chen, 2002). Furthermore, the wide

support for Linux in the software industry has proven that the open software model can

be viable. Every year there is an increasing amount of applications available on the Linux

operating system (Chen, 2002). Additionally, many managers have noted the success of

the Apache webserver software, an open source product that is used in a majority of

organizations. MySQL, an open source database product, has also proven to be quite

successful in gaining market share. Many large vendors have committed to support open

source software products by integrating them into their platforms and providing robust

levels of support (Chen, 2002).

www.manaraa.com

16

The quality of open source software has always been a concern to those who

consider using it. Aberdour (2007) discussed the benefits of the open source software

model with regards to the quality of the code. Open source software projects typically

have a small core set of developers that maintain the code, assisted by layers of other

contributors. Each layer of contributors surrounds the core much like an onion. The

closer to the core the contributing developers are, the more effects they will have on the

software. The outer layer consists of the users of the software who report problems to the

project, people who often never examine the actual source. Because of the many layers of

developers writing, improving, examining, and using the software, problems are

identified and fixed in a timely manner. Aberdour also notes that not all open source

software projects are equal, and some have much higher quality than others.

Open source software development often leads to innovation in features and

techniques (Ebert, 2007). Because the open source model allows new ideas to be easily

shared with the development community surrounding a product, new ideas quickly get

developed into new features. Sometimes the features are so popular that the proprietary

products take notice and, after some delay, incorporate the features into their own

products. Ebert discussed Asterisk, a telephony software package, as a good example

where the open source model has led to a lot of innovation. Prior to Asterisk, the

telephony market was dominated by a small number of large firms. Now, many new

suites of products built around Asterisk are being offered to small businesses, with many

new features compared to their legacy phone systems.

With the source code being openly available to anyone, some people may have

concerns about the security of the software. Malevolent hackers could use the open

www.manaraa.com

17

access to the software to more easily find a means of penetration. Also, there is some

concern about hackers introducing security holes as part of the community development

process. However, some researchers (Witten, Landwehr, & Caloyannides, 2001) believe

that by having a much larger universe of people maintaining and testing the code,

security should generally be improved. In addition, the software should be easier to repair

in the event that a weakness is found, precisely because such a wide variety of people are

familiar with the source code.

Relational Database Management Systems

The concept of an RDBMS can be simply described a tool that does three things:

it allows one to add data to it, it stores the data, and it allows you retrieve and work with

the data. Loney & Koch (2000) further described an RDBMS as storing information in

tables, with each table having one or more columns. Data can be stored and retrieved

from the tables by using Structured Query Language (SQL). Because SQL can be used to

extract data from multiple tables at once by joining the data using similar, related

columns, the database is said to be relational. That is, two tables are related if a join

operation can be performed using similar columns. Relations between tables allow a

database designer to minimize redundant data through a process of normalization.

Typically, an RDBMS consists of a complete suite of tools for the management of data,

making them far more useful than simply storing data in flat files (Loney & Koch, 2000).

The idea for using a relational model to represent data was originally presented by

Codd (1970). Prior to the research based on Codd's paper, databases had a hierarchical

layout, with each data element being the child of a parent element (Oppel, 2004). Codd

presented not only the idea of laying data for entities out in related tables, but he also

www.manaraa.com

18

developed the concepts of normalization and a mathematical language for querying data.

The mathematical nature of Codd's querying language restricted the popularity of

relational databases in the early years.

Starting in 1974, IBM began a major research project to build the first RDBMS,

based on Codd's work. One of the products of IBM's research was the database itself,

called System/R, and a querying language called SEQUEL, which was an acronym for

Structured English Query Language. Due to legal problems, SEQUEL was later changed

to SQL (for Structured Query Language). In 1978, IBM was able to distribute their new

RDBMS products to some customer sites, where end users began to develop experience

with RDBMS concepts (Groff, 2002).

In 1979, Relational Software, Inc. released the first commercial RDBMS product,

Oracle. The engineers at Relational Software had been following the research at IBM

closely and were able to develop a commercial product a full two years ahead of IBM.

The original version of Oracle had a limited feature set, much like early versions of open

source RDBMS products (Groff, 2002).

Another research effort underway at the University of California's Berkeley

computer labs led to the creation of an RDBMS called Ingres. The Ingres team created a

query language called QUEL that was more structured and had fewer similarities to

normal English when compared to SQL. In 1980, Michael Stonebreaker, Eugene Wong,

and others left Berkeley and founded Relational Technology, Inc. to develop a

commercial version of Ingres that would compete with Oracle. Although Ingres was

technically superior to Oracle, the SQL language was easier to use and Oracle had better

marketing. As a result, Ingres adopted SQL in 1986, but it was too late to compete

www.manaraa.com

19

effectively with Oracle. Faced with dwindling market share, the Ingres technology was

eventually sold to Computer Associates 1994 (Groff, 2002).

The results of the System/R research project were developed by IBM into a

commercial RDBMS product called SQL/Data System (SQL/DS). The product was

released to customers in 1982 for use on IBM mainframe computer systems running

VM/CMS. In 1985 IBM released Database 2 (DB2), for use on IBM mainframe computer

systems running the MVS operating system, which had become more widely used than

VM/CMS. DB2 used SQL, and with both Oracle and DB2 using it, SQL became the

industry standard database language. IBM eventually made versions of DB2 for all

systems in its product line, as well as all major versions of UNIX, including those of its

competitors, Hewlett-Packard and Sun Microsystems (Groff, 2002).

In 1984 Bob Epstein, who had worked on the Ingres project in its early years,

founded Sybase, a company that created an RDBMS product for use on minicomputers

from Hewlett-Packard, Sun Microsystems, and other UNIX platforms. Sybase later

developed a partnership with Microsoft to create a version for OS/2. Although Microsoft

and Sybase later dissolved their partnership, each was able to take the current code and

develop it commercially, leading to Sybase's Adaptive Server Enterprise and Microsoft's

SQL Server (Oppel, 2004).

One of the earliest examples of an open source RDBMS was MiniSQL, written in

1994 by David Hughes as part of his dissertation at Bond University in Australia (Yarger,

Reese, & King, 1999). MiniSQL was the first open source RDBMS to use SQL to query

data. Prior to the development of MiniSQL, Postgres, an open source derivative of the

commercial RDBMS Ingres, was available, but at the time it used a unique query

www.manaraa.com

language called PostQUEL. Originally, the purpose of MiniSQL was to translate SQL

commands into PostQUEL for storage in a Postgres database. Over time the translator

proved to be inefficient, and he replaced PostQUEL and Postgres with his own database

engine. The result of his efforts was mSQL.

MySQL was created partly as a reaction to some of the weaknesses of the early

versions of mSQL. According to Yarger, Reese, & King (1999), Michael Widenius had

created a database storage engine and was looking for a SQL front end to use with it so

he could develop database-driven web sites. After discussing the matter with David

Hughes, he decided that mSQL was lacking in features and functionality, which led him

to create his own front end and by 1995 MySQL 1.0 was completed. Because MySQL

had more features than mSQL, it quickly grew to be significantly more popular than

mSQL (Yarger, Reese, & King, 1999).

Also in 1995, two of Michael Stonebreaker's graduate students, Andrew Yu and

Jolly Chen, designed a SQL interface to Postgres, eliminating the need to use PostQUEL.

They called the new open source RDBMS PostgreSQL, and it had more features than

early versions of MySQL, including transactions, triggers, and subselects. The enhanced

feature set led to greatly increased popularity for PostgreSQL, especially for those

applications that required transactional support. MySQL was generally found to be easier

to install and use, so it retained its own popularity for applications that did not require a

lot of transactional support (Yarger, Reese, & King, 1999).

In 1984, Jim Starkey created Interbase, an RDBMS product for use on the PC

platform. Interbase was later sold to Ashton-Tate, and when Ashton-Tate had financial

difficulties, the company was then acquired by Borland. For a brief period in 2000,

www.manaraa.com

21

Borland made a version of InterBase available as open source, which led to a derivative

version of the code tree which became known as the Firebird RDBMS (Niccolai, 2006).

Although Firebird is not as well-known as PostgreSQL or MySQL, it continues to win

awards for being a great open source RDBMS (Martens, 2007). Developers like Firebird

for the compact size of its database and straightforward installation on PCs running

Windows (Cox, 2004).

Another open source RDBMS that is gaining in popularity is EnterpriseDB, a

product developed on a PostgreSQL base and enhanced to make it highly competitive

with Oracle. EnterpriseDB is now compatible with the Oracle Call Interface, allowing

programmers to switch from Oracle to EnterpriseDB with little or no changes. It also

works with commercial enterprise software from vendors such as SAP and PeopleSoft

(Niccolai, 2007). Niccolai also quoted an analyst at Forrester Research, Inc., Noel

Yuhanna:

EnterpriseDB is built on top of PostgreSQL which is a proven enterprise
DBMS for decades, therefore has reliability and robustness, besides offers good
overall performance and scalability.

We find that all customers that are looking to save money on database
management, should look at EnterpriseDB, along with other open source
databases such as MySQL and Ingres (Niccolai, 2007, para. 10, 11).

Although EnterpriseDB is still relatively small and only recently acquired its

100th customer, Oracle's acquisitions of several application vendors could lead many

technology managers to seek alternatives, and thus avoid being locked into an all-Oracle

environment. Then again, some customers prefer having to deal with only one vendor

(Niccolai, 2007).

MaxDB is the result of a joint venture started in 2004 between SAP AG and

MySQL AB. Previously, SAP had developed SAP DB for internal use in its enterprise

www.manaraa.com

22

software products, known as the suite SAP R/3. They market it as a free alternative to

using expensive commercial RDBMS software in R/3. By partnering with MySQL AB,

they are making the RDBMS available as open source and hope to find a larger audience

for it. As part of the deal, they renamed the product from SAP DB to MaxDB (Songini,

2004).

Starting in 1998, most database vendors made their RDBMS products available

on the Linux platform (Cornetto, 1998). It became apparent that Linux was gaining in

popularity and could eventually be the operating system of choice at most companies. For

the first time, all major open source and proprietary RDBMS products were available on

the same operating system, making it possible to do more direct comparisons.

Database Benchmarks

There has been little published research comparing the performance of open

source and proprietary relational database systems. Previously, other researchers have

created and run benchmark cases to analyze various aspects of database systems. What

follows is a review of the published research on database benchmarks.

There are many difficulties in making a fair comparison between RDBMS

running on different operating systems (Apicella & Biggs, 2000). The main difficulty is

that one cannot determine how much the operating system contributes to the performance

of the database. In the eWeek testing (Dyck, 2002), they ran their benchmark on

Windows® for the Microsoft® SQL Server and on Linux® for the other database

vendors. Because they introduced different operating systems as an independent variable,

there was no way to tell if the difference in performance was more a result of the

different database product or the different operating system, as their research did not use

www.manaraa.com

23

a multi-factor experimental design. After publishing their results, further analysis by

employees at Microsoft revealed other differences, due to the web application server

technology (Dyck, 2003). The researchers at Microsoft told Dyck that the configuration

of the ASP.NET software was not set up to make a fair comparison to the Java Server

Pages code the other systems used.

Early benchmark writers included simulations using terminals connected via X.25

networks (Serlin, 1993). The simulations used in the early benchmarks reflected a

common configuration found in the retail branch networks of large banks at the time.

Unfortunately, the delays intrinsic to a network of remote terminals soon became a

limiting factor in the TPC-A benchmark, making it obsolete (Levine, Gray, Kiss, &

Kohler, 1993).

Gray and Nyberg (1994) showed, over ten years ago, that servers made out of

commodity parts are becoming more and more capable of running OLTP and batch

processing workloads. Today, even a common desktop PC is powerful enough to run

complex OLTP and batch processing jobs.

The author of the Wisconsin benchmark (DeWitt, 1993) paid particular attention

to the issues of speedup and scaleup, even though it was one of the earliest benchmarks.

DeWitt and his associates were concerned with improving the performance of a database

by adjusting its hardware configuration.

Designing a benchmark is a challenging endeavor typically done by developers in

large organizations such as the Transaction Processing Council and their (1992) TPC-A

benchmark. The TPC was formed because previous individual attempts encountered

many difficulties, and early database researchers sought to combine their experiences

http://ASP.NET

www.manaraa.com

24

when developing the TPC benchmark. One example of an individual's effort to create a

benchmark was Strandell (2003), where the author created a benchmark case and ran it

on a couple of database systems. Strandell centered the benchmark case on the

telecommunications industry. He took the average durations of results that made it into

the 90th percentile, thus throwing out any outlier results. It would have been more helpful

if he had discussed the witnessed variance of the results, and compared the results of one

database system's score to another in a statistically significant way.

In Ailamaki, DeWitt, Hill, & Wood (1999), researchers performed their

experiments by running the same benchmark for four databases on the same hardware. To

increase confidence in the results, the experiments were repeated several times until the

final numbers had a standard deviation of less than 5%, after which the experimenters did

not feel the need to provide any other statistical comparisons. From there, they plotted

values on a graph, and relied on the small standard deviation and major differences

between variables to indicate differences. Ailamaki et al. also found that, after testing

four commercial database products for the Windows® platform, database developers

could greatly benefit by using the L2 cache more intelligently. As the L2 cache became

larger and more commonly available in modern processors, the measured performance of

databases using the L2 cache far exceeded those that did not use it. Clearly, benchmark

tests are useful in revealing which database systems are not taking advantage of new

advances in processor technology.

Several journal articles contained very little or no statistical analysis. One study

discussed the relative performance of systems doing batch processing, as well as the

relative costs, and how it has changed over the years (Gray & Nyberg, 1994). In their

www.manaraa.com

25

paper they merely reported their numbers in tables, with no mentions of means, standard

deviation, variance, or statistical significance.

Statistical analysis of experimental data is not always included in published

research. For example, there was a comparison of the various database systems used in

libraries, as well as the database vendors' relative market share in 1999 and 2000

(Matoria & Upadhayay, 2002). The data in their report was presented in tables and pie

charts, with no statistical analysis.

Poess & Floyd (2000) similarly ignored statistical analysis when discussing new

benchmarks TPC-H, TPC-R, and TPC-W. They also reported some of the early results

from the TPC benchmarks, but provided no discussion as to how the results compared to

each other. There were no confidence intervals on their reported statistics, making it

impossible to tell if the differences between scores were statistically significant.

To avoid some of the problems earlier researchers encountered, overly complex

benchmark tests should be avoided. Although the database queries in a benchmark case

may include many of the common advanced features SQL has to offer, the suite should

be simple enough to implement on a wide variety of database products. In the end,

moderation is very important in accomplishing successful tests.

Summary

Open source products are being adopted for a wide variety of applications by

many technology managers, especially as these products have become more reliable and

functional. Many open source database products share the same origins as their

proprietary counterparts. There have been few published reports of database benchmarks,

and the quantitative detail of these reports has been varied in quality. Technology

www.manaraa.com

26

managers could benefit from a more current analysis, particularly with all of the database

vendors releasing new versions of their software in recent years.

www.manaraa.com

27

CHAPTER 3: RESEARCH METHOD

An examination of the relative performance and scalability of proprietary and

open source RDBMS products was needed to provide technology managers with better

insight when making purchasing decisions. A suite of benchmark tests were designed and

developed to enable measurement of the performance of a given RDBMS. The

benchmark case tests were run on each proprietary and open source RDBMS product on a

server with one active processor core. The benchmark tests were then repeated with four

active processor cores, in order to be able to measure the scalability of each database

system.

Technology managers would like to cut costs by using open source RDBMS

products, but they do not know how well the open source RDBMS products available

today compare to the proprietary RDBMS products. Proprietary RDBMS products cost

between $5,000 and $40,000 per processor for the software license, while open source

products do not require a software license (Boulton, 2003). A benchmark case was

created and run against several popular open source and proprietary RDBMS products.

The results were analyzed to find a measure of the relative performance and scalability of

open source and proprietary RDBMS products, answering the following research

questions:

1. On a server with one processor core, to what extent, if any, does the

performance of open source RDBMS products, on average, equal or exceed

the performance of proprietary RDBMS products, on average, when run on

the same operating system and hardware?

www.manaraa.com

28

2. On a server with four processor cores, to what extent, if any, does the

performance of open source RDBMS products, on average, equal or exceed

the performance of proprietary RDBMS products, on average, when run on

the same operating system and hardware?

3. To what extent, if any, does the scalability, from one processor to four

processor cores, of open source RDBMS products, on average, equal or

exceed the scalability of proprietary RDBMS products, on average, when run

on the same operating system and hardware?

The benchmark scores are based on duration, so a lower score reflects higher

performance. The scores were normalized to allow easy comparison. What follows is a

description of the how the suite of benchmark case tests were constructed and used to

collect the data that measured the relative performance and scalability of the selected

RDBMS products.

Research Methods and Design

To compare performance of RDBMS products, the benchmark tests were run on

each product using the same server with the same number of processor cores. The tests

were repeated on the server with one and four processor cores. The first research question

was answered by comparing the average performance of open source databases (Yopen-perf-

i) against proprietary databases (Ypr0p-perf-i) on the server with one processor core. The

second research question was the same, except with four processor cores (Yopen-perf-4 and

Ypr0p.perf-4). To compare scalability, the results of the performance tests were compared to

the number of processor cores and provide for a rate of increase in performance as

processor cores are added. The third research question was answered by comparing the

www.manaraa.com

29

average scalability of open source databases (Yopen-scaie) against proprietary databases

(Yprop-scaie) by examining the average rate of increase in performance.

A benchmark case was created consisting of three parts, to simulate the different

kinds of load a real-world application may incur. There are tests to reflect batch

processing loads, online transaction processing, and online analytical processing. The

case was run on the server using one processor core and again with four processor cores,

to show how products scale up when processors are added to the server. The scalability of

RDBMS products is particularly relevant with most computers adopting multi-core chip

technologies in the near future (Spooner, 2005).

It is desirable to have the benchmark case model a realistic problem. The

application tasks included in the benchmark case tests should represent the typical use

cases. As a result, a data model was created that would describe the workings of a

hypothetical chain of retail stores. It involves the creation of entities like customers and

their addresses; club memberships; transactions and their contents; item ratings submitted

by customers; stores and their inventories; departments and their discounts at various

stores; individual items for sale; shipping charges and tax rates; and volume discounts.

The entities were selected to create a simple model; a real application would go into more

detail with many more entities and attributes. The model is described more clearly in

Figure 1.

www.manaraa.com

30

club members

PF customerjd
totalquantity
totalspent
member since

INTEGER
INTEGER
NUMERiq9,2)
DATETIME

lastpurchasedate DATETIME
discount NUMERIC(2,2)

may be a

itemratings

item_id INTEGER
customerjd INTEGER
rating SMALLINT
date_updated DATETIME

may w rite

°̂-

customer accounts

PK customerjd INTEGER
first_name VARCHAR(20)
last_name VARCHAR(20)
phone VARCHAR(20)
currentaddress SMALLINT
balance NUMERiqi2,2)
creationdate DATETIME
activity date DATETIME

has

^

customer addresses

FK

customerjd INTEGER
sequencenumber SMALLINT
street_address VARCHAR(40)
city VARCHAR(20)
state CHAR(2)
zip NUMERIC(5)

bought r
* <

includes

y
has ratings

items

PK

FK

item_id INTEGER
name VARCHAR(40)
w holesale_price NUMERIC(9,2)
w eight SMALLINT
item_discount NUMERIC(2,2)
departmentjd INTEGER

Jare part of

«<

transaction items

transaction_id INTEGER
sequencenumber SMALLINT
itemjd
price
quantity
extendedprice
discount
discountedprice

INTEGER
NUMERIC(9,2)
SMALLINT
NUMERIC(9,2)
NUMERIQ2.2)
NUMERIC(9,2)

>H

transactions

transaction id
customerjd
store id
date
subtotal
totalw eight
club_discount
volumediscount
shippingcost
taxes
total

INTEGER
INTEGER
INTEGER
DATETIME
NUMERiq9,2)
SMALLINT
NUMERIQ2.2)
NUMERJG(2,2)
NUMERIQ9.2)
NUMERIQ9,2)
NUMERiq9,2)

shipping

¥
stores ^have

PK

FK

store_id INTEGER
store_name VARCHAR(20)
store_discount NUMERC(2,2)
ships_from_state CHAR(2)

from_state CHAR(2)
to_state CHAR(2)
weight SMALLINT
shipping_cost NUMERIC(9,2)

is part of

store inventories

store_id INTEGER
i temjd INTEGER
quantity INTEGER
retail_price NUMERC(9,2)

rom ± to

&>-
may have

is location of,
states

PK state CHAR(2)
tax_rate NUMERIQ5,3)

departments

PK
fray have

departmentjd INTEGER
name VARCHAR(40)

department_discounts

storejd INTEGER
departmentjd INTEGER
sale_discount NUMERIC<2,2)

volume discounts

PK total purchase NUMERIC(9,2)
discount NUMERIC(2,2)

Figure 1. The database schema for the database benchmark case, including table names,
field names, keys, data types, and relationships.

The data model includes several kinds of discounts and many relationships, so

that the activities on the database required complex queries and that individual units of

work involved several tables. Each of the database systems tested created the 14 tables

described in the model.

www.manaraa.com

31

The first part of the benchmark case measured batch load time by loading data

from predetermined raw data files that were created before any of the benchmark case

tests were run. The raw data files were the same for every database system tested; thus,

the data only needed to be generated once. The test data was created using software

written in Perl to create text files containing the data. Each file contained data for one

table, with one line per record and column data separated by commas. In order to

simplify the benchmark case test scripts, there are no commas within the actual data

fields themselves.

The test data were the same for all databases and all benchmark case test runs to

avoid variations in test data affecting the outcome of the performance measurements. If

the data generated had been different for each database, it is possible that one RDBMS

product might have received data that would have been easier to query and process, thus

leading to an unfair advantage. To maintain a fair comparison, the same data set was used

for all RDBMS products.

What follows is a description of the 14 tables involved in the test, and how the

raw data was generated for the text files. Each of the tables is also described in the data

model shown in Figure 1.

The states table serves as a list of valid states in the system. Each state also has a

tax rate associated with it. The state column serves as a foreign key in the stores,

shipping, and customer_addresses tables. To create the states table, a list of the 50 states

was used and a tax rate was assigned to each state. The tax rate was randomly chosen for

each state with values between 6.5% and 8.875% using the code listed in Appendix A.

The states table will have 50 records.

www.manaraa.com

32

The departments table serves as a list of valid departments. Each department has a

department id and a name. The departmentid column serves as a foreign key in the

department discounts and items tables. The department names were randomly generated

using the code listed in Appendix B. The departments table generation code randomly

selected a name from each of two lists and combined them. The code also ensured that no

name was repeated twice. The randomly generated names may not be very realistic but

sufficed for the queries that were run as part of the benchmark. The departments table has

60 records.

The stores table contains a list of the stores used by the fictional company the

benchmark case is modeling. Each store consists of a storeid, a storename, a

storejdiscount, and a shipsJrom state column. The store_id column also serves as a

foreign key in the departmentdiscounts and store inventories tables. The stores data file

was created using the code listed in Appendix C. The storename was generated by

randomly picking one word each from two lists, and appending that with a number

designating the instance of that pair, for example, Mega Mart 1, Mega Mart 2, and so on.

The storediscount was randomly assigned with an 80% chance for 0% discount and a

5% chance for each of 5%, 10%, 15%, and 20% discounts. The shipsfromstate was

chosen randomly from a list of 50 states. The stores table has 250 records.

The departmentdiscounts table contains a list of the sale discounts currently

present in the various departments at the various stores. Each department discount

consists of a storeid, a department_id, and the sale discount. The first two fields

combine to create a composite primary key. Values were randomly assigned for each

combination of store and department. To simulate the effect of not every store having

www.manaraa.com

every department, each combination had only a 20% chance of existing in the table. For

those combinations of store and department that exist, the amount of the discount had a

50% chance of being 0%, and a 10% chance each of being one of 5%, 10%, 20%, 30%,

or 40%o. The data file was created using the code listed in Appendix D. The

departmentdiscounts table has about 3000 rows.

The shipping table details the cost of shipping an item from one state to another,

depending on its weight. There are four columns, which are from _state, to state, weight,

and shipping cost. The first three fields combine to create a composite primary key. The

code to generate the data for the shipping table is listed in Appendix E. There are ten

weight categories and a base cost associated with each. For each combination of

fromstate and tostate, a random factor was selected from 1.1, 1.2, 1.3, 1.4, 1.5, and 1.6.

The random factor was multiplied by the base shipping cost for each weight category for

that state pair. Although the random distribution does not match a realistic shipping

schedule, it sufficed for the purposes of the benchmark. There are 25,000 records in the

shipping table.

The items table describes the various items available for sales in the various

stores. Each item consists of an item_id, name, wholesalejprice, weight, item discount,

and department_id. The itemid also serves as a foreign key in the item_ratings,

transaction items, and storeinventories tables. The code to generate the items and their

information is listed in Appendix F. The name of each item was created by randomly

picking between two and five words from seven lists and concatenating them together. As

a result, some of the names may appear to be nonsense when read by the human eye (for

example, Felt Slow Cool Cool, Pants Yellow Fast, Premium Premium Socks, and so on).

www.manaraa.com

34

The randomly generated names served well for the benchmark testing and allowed for

randomly searching on various keywords. The data generation program limits the length

of any name to 40 characters, truncating to 40 any names that are longer than that. The

wholesale_price was randomly assigned a value between 10.00 and 610.00. The weight

was randomly assigned a number between 1 and 20. For itemdiscount, there was an 80%

chance of 0% discount and a 5% chance each of a 5%, 10%, 15%, or 20% discount. The

item was also randomly assigned to one of the 60 departmentid values. The items table

had approximately 25,000 records.

Raw data for customer names was acquired from the U.S. Census Bureau (2005),

which listed the most common surnames, male first names, and female first names. Along

with each name it listed the relative frequency at which the names occurred in the

population. The census data files were read into a spreadsheet and adjusted to create a

cumulative distribution function and converted in a format that could be read by the Perl

programs for the creation of customer names. The resulting data files male, txt, female.txt,

and lastnames.txt were created by the spreadsheet. Similarly, a list of population

estimates for U.S. cities with a population of 10,000 or more was acquired from the U.S.

Census Bureau (2000). The census data was also read into a spreadsheet and converted

into a cumulative distribution function. The data file cities.txt was derived from the

spreadsheet. Using the census data allows the customer data to achieve a more realistic

appearance.

The customers table has information about the customers of the fictional company

the benchmark case is modeling. Each customer record has a customer id, first_name,

last_name, phone, current_address, balance, creation date, and activity_date. The code

www.manaraa.com

35

to generate the data for the customers table and the customer addresses table is listed in

Appendix G. It requires data files that were generated as described in the previuos

paragraph. The customerid serves as a foreign key in the customeraddresses,

transactions, club members, and item_ratings tables. For the first_name, the gender was

determined randomly with a female name appearing with a 52% chance. Using a random

number and the cumulative distribution function from the male and female first names, a

first name was selected. A lastname was chosen in a similar manner. The phone number

was generated randomly. Each customer can have several addresses in the

customeraddresses table, and the currentaddress field maps to one of those addresses.

The customer's balance is 0.00 95% of the time, and a random value between 0.00 and

2000.00 otherwise. For the creationdate, a date was randomly selected between January

1, 2003 and December 31, 2007. The creation_date indicates when the customer account

was created. For the purposes of the benchmark, the time period was hardcoded to the

day after the five-year period mentioned previously, which was January 1, 2008. The

activitydate indicates the last time the customer accessed the system and was given a

date randomly chosen from the last six months of the same period the creationdate was

chosen from, so it was a value between July 1, 2007 and December 31, 2007. If the

creationdate was after July 1, 2007 then the activitydate was set to a date randomly

chosen between the creationdate and December 31, 2007. There are about 1,000,000

records in the customers table.

The customeraddresses table contains addresses belonging to customers in the

customers table. Each record consists of a customer_id, sequence jiumber,

street_address, city, state, and zip. The code that generated the data for the customers

www.manaraa.com

36

table also created the data for the customeraddresses table at the same time. The

customerid and sequence_number form a composite primary key for the table, with the

sequence_number unique for a given customerid only, starting with 1 for each customer.

The streetaddress was randomly generated by picking a house number between 1 and

10,000, a street number between 1 and 150, one of eight directions, the word Road,

Street, Avenue, or Boulevard. The city and state were randomly selected from the

cumulative distribution file created for cities earlier. The zip was a randomly generated

five-digit number. Each customer was randomly determined to have between 1 and 5

addresses. The generated data resulted in approximately 3,000,000 records in the

customeraddresses table.

The itemratings table contains ratings by customers of various items the

company sells. Each record has an item_id, customer id, rating, and dateupdated. The

item_id and customerid form a composite primary key for the table. The code to

generate the data for the item_ratings table is listed in Appendix H. For every item, there

was an 11% chance of having 0 ratings, a 78% chance of having between 1 and 10

ratings, an 11% of having between 1 and 100 ratings, and a 1% chance of having between

1 and 1000 ratings. Using a nonuniform distribution provides an interesting spread of

items and their ratings. The dateupdated was randomly determined to be between the

customer's creationdate and the end date of the model, December 31, 2007. There were

approximately 360,000 rows in the itemratings table.

The storeinventories table describes the inventory of items in each store. Each

record consists of a store _id, item id, quantity, and retailjprice. The storeid and itemid

make up the composite primary key. The code to generate the storeinventories table is

www.manaraa.com

37

listed in Appendix I. For the quantity, there was a 40% chance of there being 0 quantity

for a given item, otherwise a random amount between 1 and 6 items. If the quantity is 0,

then there was no record for that item and store. The retailprice was randomly set to the

wholesale price plus a markup between 5% and 40%. The generated data had

approximately 3,750,000 records in the storeinventories table.

The volume discounts table provides a schedule of customer discounts based on

the total amount of a purchase. The data was generated by the code in Appendix J. Each

record has two fields, total_purchase and discount. The total purchase amount starts with

100, 200, 400 and doubles on the way up to 102,400. The discount starts with 0%, 1 %,

2% and works its way up to 10%. The volumediscounts table has 11 rows.

The transactions and transactionitems tables require some of the data from the

clubmembers table, but the rest of the clubmembers table cannot be generated until

information about the transactions is known. First, an interim version of the

clubmembers table was created that has only two fields, the customerid and the

discount. The code to generate the interim table is listed in Appendix K. For each

customer account, there was a 15% chance of it being a club member. Club membership

has three levels of discount: a 75% chance of a 5% discount, a 20% chance of a 10%

discount, and a 5% chance of a 15% discount. The interim file had about 150,000

records.

The next program uses the output of the previous program, the interim file. It

generates the transactions and transactionitems table simultaneously. Once the

transaction data was completely generated, the final version of the clubmembers table

was generated, using sums that were calculated on the fly while generating transactions.

www.manaraa.com

38

The program to generate the transaction records and final clubmembers data is listed in

Appendix L. About 15,000,000 transaction records were created; the number was random

because it started with a loop over 30,000,000, choosing a customer account at random,

and only generating a transaction if the randomly generated transaction date is greater

than the customer's creation date. Each row in the transactions table consists of the fields

transaction_id, customer id, storeid, date, subtotal, totaljweight, club_discount,

volume discount, shippingcost, taxes, and total. The transaction_id and customerid

make up the composite primary key for the table. The storeid was randomly selected.

Each transaction had a 75% chance of having between 1 and 3 transaction items, and a

25% chance of having between 1 and 19 transaction items. The random distribution was

selected to result in approximately 4 items per transaction. The generated data resulted in

about 60,000,000 rows for the transaction _items table. The transactionitems table has

the fields trans action id, sequence number; item id, price, quantity, extended_price,

discount, and discountedjprice. The transactionid and sequencenumber make up the

composite primary key for the table. The sequencenumber identifies individual items for

a transaction. The itemid was randomly selected from the items table. The price was

from the items table as well, and marked up by a random amount of -20% to +40%. The

quantity was set to 1 90% of the time and otherwise was a random number between 1 and

4. The weight was taken from the items table, multiplied by the quantity, and added to a

sum (totalweight) for each transaction. The extended_price was the price times the

quantity. 50% of the time the discount was set to 0%, and a random value between 1%

and 40% otherwise. The discounted_price was then computed from the extendedprice

and the discount. The sum of the discountedprice values for a given transaction became

www.manaraa.com

that transaction's subtotal. The volumediscount and clubdiscount were computed for

the transaction based on the customer's club membership (if any) and the subtotal. The

shippingcost was computed based on values in the shipping table, based on the store's

state, the customer's state, and the totalweight. The taxrate was taken from the states

table, based on the customer's state. Finally the total was computed for the transaction

based on the other values.

The same program used to create the data for the transation and transaction_items

tables also generated values for the clubmembers table by summing values while

computing data for each transaction. The fields in the final clubmembers table include

customer_id, total_quantity, total_spent, member since, last_purcha.se date, and

discount. The customerid and discount were copied from the interim club member table.

The totalquantity and totalspent were summed from each transaction as they were

generated. The membersince date was a randomly generated date between January 1,

2003 and December 31, 2007. If the randomly generated date was less than the customer

creationdate, then it was replaced with the customer creation_date. The

lastpurchasedate was the date of that customer's most recent transaction, or null if the

customer had no transactions. The clubmembers file had about 150,000 records, the

same number as the interim club members file.

The test data was generated only once, using the test data generation programs. A

copy of the original 14 data files was used in each run of the benchmark testing of each

database product. Every RDBMS product used the same data, which helped to provide a

fair comparison between databases products. The size of the data generated was designed

to be significant enough to require a nontrivial amount work for each database product. In

http://_purcha.se

www.manaraa.com

40

particular, the resulting database size was larger than the amount of memory available on

the system, which meant that the database application could not simply cache all of the

data into memory. Systems that arrange data on disk more intelligently and have smarter

caching and querying algorithms performed better than others that did not.

The benchmark case was divided into three parts: loading the data, performing

transactions, and generating reports. Loading the data models a batch data feed from an

external system being used to load the data into the database. For each database, a script

read the data from the raw text files and inserted the values into the tables. The 14 tables

were loaded in parallel. The second phase of the benchmark case involved running

transactions that simulate typical business activities. Typical transactions involved

inserting, updating, and deleting data. A master driver script ran 20 clients in parallel, and

each executed a series of 500 randomly selected transactions. When all of the transactions

were completed, the second phase was finished. Finally in the third phase, a collection of

reports were run. All of the reports ran in parallel. Some of the reports involved complex

queries that look at large amounts of data. When all of the reports were finished, the third

phase was completed.

The script to load the data truncated all of the tables and started 14 child

processes, one for each test file and database table associated with the test file. Each child

process loaded one table by reading data from a copy of the original raw text file and

executing insert statements into the database. Every RDBMS product used the same test

data. Executing insert statements was the most portable solution, but still required the

date fields to be translated into a format acceptable by the database system. Some

database products, like Sybase, support a bulk copy feature that allows for faster loading

www.manaraa.com

41

if the raw text file is prepared in a certain format; but for the purposes of the benchmark

case the more general method of simply using insert statements was used. The benchmark

load script can be seen in Appendix M. The raw text files containing the data were

created in a comma-separated-values format, with the fields in the order described in the

data model shown in Figure 1. The data load was repeated several times, using an empty

database each time. Batch load times were recorded for further analysis. After the last

batch load, a copy of the database was made, which was used to restore the database

image for each transactional processing test run.

The second part of the benchmark case measured transactional processing. For the

transactions, each of the 20 clients will perform 500 random transactions. Transactions

were divided into three types, which were called very common transactions, common

transactions, and rare transactions. The names "very common", "common", and "rare"

were selected to easily represent the relative importance of each transaction. Each client

will perform a very common transaction 60% of the time, a common transaction 30% of

the time, and a rare transaction 10% of time. The percentages for each of the three types

of transactions were selected based on the author's personal experience with production

systems. For the purposes of the benchmark case, the selected the percentages reflect that

some transactions happen more frequently than others. There are several of each type of

transaction, and the particular transaction was chosen randomly. For the purposes of the

transactions, the current date was assumed to be January 1, 2008, because the generated

data contained dates between January 1, 2003 and December 31, 2007.

The following is a list of the very common transactions:

Create a customer and address. A new record is inserted into the customers and

www.manaraa.com

42

customeraddresses tables.

Update a customer balance. The balance is read from a randomly chosen

customer and updates the value in the customers table, subtracting 100 from it.

Customer rates an item. A randomly selected customer and item are chosen. If an

itemrating record already exists for the selected customer and item, then the rating is

updated to a random value between 1 and 5 and the date_updated is set to January 1,

2008. If a record does not exist, then a new one is created.

Customer purchases items. A random number of items and quanitities is selected

following the same chances that were used in the generation of the data. A store is

randomly chosen and items are randomly selected from the storeinventories table. A

randomly selected customer is chosen and records are inserted into the transactions and

transactionitems tables based on the data fetched from the transactions,

transaction_items, volumediscounts, clubmembers, shipping, and states tables, which

contain the necessary information to complete the transaction. The clubmembers table is

also updated to reflect new values for totalquantity, total_ spent, and lastjpurchasedate.

Add to or remove from a store's inventory. A randomly selected store and item are

selected. If the store has no inventory in that item, a new record is inserted into the

storeinventories table. If a record exists, then the record is deleted.

Remove an item from all stores. An item is randomly selected. The

storeinventories table is updated with zero quantity for all stores carrying the item. If it

does not exist, then an item is created.

The common transactions are:

Update customer phone. The phone field of a randomly selected record in the

www.manaraa.com

43

customers table is changed.

Update customer address. The streetaddress, city, state, and zip of a randomly

selected record in the customer_addresses table is changed.

Add new address. A new record is inserted into the customeraddresses table for a

random customer.

Change current address. The highest sequence_number value from the

customer_addresses table is selected for a random customer and the currentaddress field

of the customers table is randomly set to a value less than or equal to the highest

sequence number.

Customer joins club. A randomly selected customer is chosen. If the customer is

not in the clubmembers table, a new record is inserted with a discount of 5%, a

membersince of January 1, 2008, 0 for total_spent and totalquantity, and null for

lastpurchasedate. If the customer is already a member, then their discount will be

increased by 5%, unless it is already 15%, in which case it will be lowered to 5%.

A new item is created. New information is randomly generated for the item, and

values are inserted into the items table. In addition, 20% of stores will get inventory of

the item and records will be inserted into the storeinventory table. The quantities and

retailprices are randomly determined using a method similar to what was used in the

data generation program.

An item will be updated. The wholesaleprice and itemdiscount fields for one

record in the items table are updated to a new random amount. The storeinventory table

is updated with new retailprice values for that item as well.

The rare transactions are:

www.manaraa.com

44

A new store is created. Values are randomly generated for the new record in the

stores table. New records are also inserted into storeinventory and departmentdiscounts

tables as well, using methods simliar to that used for the generation of the initial data,

except with far fewer items added to the store's inventory.

A store is closed. A store number is randomly selected. The record will be deleted

from the stores table and related records will be deleted from the storeinventory and

departmentdiscounts tables. If the randomly selected store does not exist, then the

transaction creates a new store instead.

A store's discount is updated. A randomly chosen store has its record updated in

the stores table. The retail_price is also updated in the store_inventories table as well for

that store.

Add or remove a department discount. A store and depart are randomly selected.

If the pair has a record in the departmentdiscounts table, then it will be deleted.

Otherwise, a randomly selected salediscount is selected and a new record is inserted into

the table.

Update the volume discounts. Every total_purchase value in the volumediscounts

table is increased by 10%, or every totalpurchase value is decreased by 10%.

Update shipping costs. Every shippingcost value in the shipping table is

increased by 10%, or every shippingcost value is decreased by 10%.

Change the club member discounts. Either increase all of the discount values in

the clubmembers table by 10%, or decrease them all by 10%.

The program driving the transactions consists of two parts. The first part has

database-independent code, and controls the random value generation and basic SQL

www.manaraa.com

45

statements. The second part has the database-dependent code, which is unique for every

database. The benchmark transaction script is listed in Appendix N. Efforts were made to

minimize the amount of database-dependent code, to simplify the programming and

provide for a fair comparison between database systems.

The program driving the transactional tests measured how long it takes to

complete all of the 20 processes to run their 500 transactions. The measured time was

recorded as one sample. The database was then restored to a copy of where it was before

the transactional processing started, and the transactional processing test was then

repeated. The transactional processing test was repeated several times, with each time

being recorded for further analysis.

The third part of the benchmark case involve report generation. The reports model

possible queries used in decision support. In the report generation phase of the

benchmark case, the reports were run in parallel.

The reports are:

Store Profits 1. List the stores in order by total profits for the day. Profit is retail

price minus wholesale price. Also list the number of items sold, the total weight, and the

percentage of club members making the purchases.

Store Profits 2. Run the Store Profits 1 report except with a time frame of the past

month.

Store Profits 3.Run the Store Profits 1 report except with a time frame of the past

year.

State Items 1. Report by state the total number of items shipped for the past day.

Include the total shipping costs, and total weight.

www.manaraa.com

46

State Items 2. Run the State Items 1 report except with a time frame of the past

month.

State Items 3. Run the State Items 1 report except with a time frame of the past

year.

Department Revenues 1. Report by department showing the departments with the

highest revenues for the past day. Also show number of items and number of stores.

Department Revenues 2. Run the Department Revenues 1 report except with a

time frame of the past month.

Department Revenues 3. Run the Department Revenues 1 report except with a

time frame of the past year.

Most Popular Items. List the 100 most popular items by quantity for the past year.

Most Profitable Items. List the 100 most profitable items for the past year, using

total profits generated.

State Customers I. List the states ordered by number of customers for the past

day. Use the current addresses of the customers.

State Customers 2. Run the State Customers 1 report except with a time frame of

the past month.

State Customers 3. Run the State Customers 1 reprot except with a time frame of

the past year.

City Customers 1. List the cities ordered by number of customers for the past day.

Show only the top 100 cities.

City Customers 2. Run the City Customers 1 report except with a time frame of

the past month.

www.manaraa.com

47

City Customers 3. Run the City Customers 1 report except with a timeframe of the

past year.

Top Customers 1. List the top 100 customers for the past day. Use the total spent

by each customer.

Top Customers 2. Repeat the Top Customers 1 report except with a timeframe of

the past month.

Top Customers 3. Repeat the Top Customers 1 report except with a timeframe of

the past year.

The generated data will assume a historical period between January 1, 2003 and

December 31, 2007. The transaction processing tests assume a current date of January 1,

2008. For the report generation,past day means January 1, 2008, past month means the

period from December 1, 2007 to January 1, 2008, and past year means the period from

January 1, 2007 to January 1, 2008.

Before the report generation starts, the database were halted and restarted, to flush

out any data values from memory caches. The system then measured the time it took to

complete all of the reports, which ran in parallel. The time measured started when the

report generation benchmark case test started, and ended when the last report completed.

The database was then halted and restarted again for the next run of the report generation

test. The system halts and restarts occured outside the measurement time, and were used

to ensure the database started from the same initial condition each time. The time

measurements were collected and used for further analysis. The benchmark report

generation script is listed in Appendix O.

www.manaraa.com

48

The benchmark case consists of one set of batch load tests, transaction processing

tests, and report generation tests. Each case had several run times for each part. Once the

case completed for a given database product running with one processor, the entire

process was repeated with the server running with four processors. When that was

completed, the testing then moved on to the next database product being reviewed. The

testing then continued until all of the database systems had been measured.

Participants

The benchmark case is a non-experiment measuring the performance of software

applications, involving no human participants. The benchmark case was run against the

most popular proprietary and open source RDBMS products, and time measurements

were taken for each benchmark case test run. As there are no treatments, measurements

cannot be considered an experiment, so this qualifies as a non-experiment. The subjects

of the measurements are the RDBMS products, so no human and no animal participants

were used.

Three proprietary and three open source RDBMS products were examined. These

six products have a combined market share of over 95% on the Linux platform (Chen,

2002). The results of this research are thus intended to generalize to the whole population

of RDBMS products available on the Linux platform.

Materials/Instruments

The benchmark case tests were performed on a PC running Linux. The hardware

consisted of an Intel quad-core processor, one gigabyte of memory, and two 320 gigabyte

SATA drives in a mirrored configuration. The benchmark case was written in Perl, and

ran on the same host as the database, eliminating the need for any network

www.manaraa.com

49

considerations. The Perl DBI library was used to access the database, which allowed for

most of the code to be written in a database-independent manner.

To maintain control in the test environment, all of the tests were performed on

the same hardware and operating system. For each benchmark case, the same server was

used, with the same operating system. Only processes belonging to the operating system,

the RDBMS, and the benchmark case tests were run on the server. The server was

restarted before each test to ensure that each test had a similar operating environment. No

other applications were run on the server during the tests

The test environment was a PC running Linux. The choice of hardware platform

reflected the changing economics of servers today. Hence, a server with multiple cores

was chosen, but due to costs constraints the hardware purchased turned out to be a quad-

core server with a 2.4 GHz Intel Core 2 Quad® Q6600 processor running Linux.

Linux was used because it is rapidly being adopted by many firms for server

applications (Silwa, 2005), and most database software vendors have a Linux version

available, including Oracle® (Songini, 2003) and IBM® (Campbell, 2002).

Unfortunately, running the tests on Linux excluded Microsoft® SQL Server from being

tested, as it only runs on Windows®. Comparing the performance of different RDBMS

products on different platforms is difficult, because one cannot tell which part of the

performance is attributable to the RDBMS and which is attributable to the platform

(Apicella, 2000). The proprietary RDBMS products are from other vendors, but their

names are not included in the results because some proprietary RDBMS products do not

allow benchmark tests of their products to be published without their written consent

(Bruckler, 2005). The proprietary RDBMS products Oracle® lOg, Sybase® Adaptive

www.manaraa.com

50

Server Enterprise 15, and IBM® DB2 9.5 were randomly assigned the names Database

A, Database B, and Database C. The open source RDBMS products tested were

MySQL®, PostgreSQL, and Firebird®. Alternative RDBMS products like Sleepycat,

One$DB, and other similar products were not used in the benchmark case, because

Sleepycat and One$DB are generally considered for embedded use and not as standalone

database servers.

Operational Definition of Variables

This section describes all of the independent and dependent variables that are

inputs to the computation of the benchmark. There are four independent variables: the

RDBMS product, the number of processor cores, the benchmark case test, and the

benchmark case test run number. For each of these four values test durations were taken.

The rest of the dependent variables are constructed upon the test durations, which were

necessary for the analysis.

RDBMS Product: Independent variable (Xj). The specific database product being

tested. Some database products were open source and some were proprietary.

Number of Processor Cores: Independent variable (Xp). The number of processor

cores used by the database system during the test, either Xp=l or Xp=4.

Benchmark Case Test: Independent variable (X,). There are three tests that make

up the benchmark case. Xt=l represents the batch load test. Xt=2 represents the

transaction processing test. Xt=3 represents the report generation test.

Benchmark Case Test Run: Independent variable (X,). Each test will be run 10

times, so Xr will take on the values 1 through 10.

www.manaraa.com

51

Test Duration: Dependent variable (Yduraihn-d.p.i.r) • The duration of a benchmark

case test run for a given database product, number of processor cores, and benchmark

case test. The benchmark case test programs take clock measurements at the start and

finish of each test. The duration is calculated as the difference of these clock values.

Normalized Average Duration: Dependent variable (Y„avg^,P,t) • The average

duration of the benchmark case test runs for a given database product, number of

processor cores, and benchmark case test, normalized by dividing it by the equivalent

score for MySQL, and multiplying by 100.

Performance: Dependent variable (Yperf-d,P)- The performance of a given database

product and number of processors, using a weighted average of the normalized average

durations. The formula to be used is Yperf-d,p = (0.15)Ynavg-d,p,i + (0.55)Ynavg-d,P,2 +

(0.3)Ynavg-d,p,3.

Scalability: Dependent variable (Yscaie-d)- The scalability is the rate of

improvement of performance for a given database product when going from one

processor core to four processor cores, as given by the formula Yscaie-d = Yperf-d,4 / Yperf_d,i.

Performance of Proprietary RDBMS Products with One Processor Core:

Dependent variable (Yprop.perf-i). The average of the values Yperf_d,i for those database

products that are proprietary.

Performance of Proprietary RDBMS Products with Four Processor Cores:

Dependent variable (Yprop.perf.4). The average of the values Yperf-d,4 for those database

products that are proprietary.

Scalability of Proprietary RDBMS Products: Dependent variable (Yprop.scaie). The

average of the values Yscaie-d for those database products that are proprietary.

www.manaraa.com

52

Performance of Open Source RDBMS Products with One Processor Core:

Dependent variable (Yope„.perfi). The average of the values Yperf-d,i for those database

products that are open source.

Performance of Open Source RDBMS Products with Four Processor Cores:

Dependent variable (Yopen.perf4). The average of the values Yperf-d,4 for those database

products that are open source.

Scalability of Open Source RDBMS Products: Dependent variable (Yopen.scaie).

The average of the values Yscaie-d for those database products that are open source.

www.manaraa.com

Table 1

Construct Variables

Construct Definition Possible Values

Variable

Yduration-d,p,t,r Duration, in minutes, for RDBMS Xd to run > 0.

the benchmark case test Xt with number of

processor cores Xp during run Xr.

Ynavg-d,p,t The normalized average duration for > 0. Equals 100.000 for

RDBMS Xd, test Xt, and number of MySQL,

processor cores Xp.

YPerfd,p Performance of RDBMS Xd with number of > 0, between min and

processor cores Xp. max of Ynavg-d,p,t for a

given Xd and Xp.

YSCaied Scalability of RDBMS Xd, taken as Yperf- > 0, most likely between

d,4/Yperf_d,i 0.250 and 1.000.

YProp-perf-i Average performance of proprietary RDBMS > 0, between min and

products with one processor core, taken as max of Yperf-d,i for Xd in

the average of Yperf-d,i where Xd is in the set the set of all proprietary

of all proprietary RDBMS products tested. RDBMS products tested.

YPr0p-perf-4 Average performance of proprietary RDBMS > 0, between min and

products with four processor cores, taken as max of Yperf-d,4 for Xd in

the average of Yperf-d,4 where Xd is in the set the set of all proprietary

www.manaraa.com

54

prop-scale

open-perf-1

• open-perf-4

Y open-scale

of all proprietary RDBMS products tested.

Average scalability of proprietary RDBMS

products, taken as the average of Yscaie-d

where Xd is in the set of all proprietary

RDBMS products tested.

Average performance of open source

RDBMS products with one processor core,

taken as the average of Yperf-d,i where Xd is in

the set of all open source RDBMS products

tested.

RDBMS products tested.

>0, between min and

max of Yscaie-d for Xd in

the set of all proprietary

RDBMS products tested.

> 0, between min and

max of YPerf-d,i for Xd in

the set of all open source

RDBMS products tested.

Average performance of open source > 0, between min and

RDBMS products with four processor cores, max of Yperf-d,4 for Xd in

taken as the average of Yperf-d,4 where Xd is in the set of all open source

the set of all open source RDBMS products RDBMS products tested,

tested.

Average scalability of open source RDBMS

products, taken as the average of Yscaie-d

where Xd is in the set of all open source

RDBMS products tested.

>0, between min and

max of Yscaie-d for Xd in

the set of all open source

RDBMS products tested.

Data Collection, Processing, and Analysis

The results of the testing with the proprietary products using one processor core

were combined into one score that represents the proprietary RDBMS products.

www.manaraa.com

55

Likewise, the scores for the open source RDBMS products using one processor core were

combined into one score representing open source products. The combined scores were

used as the basis for comparison in answering the primary research question. Similar

testing was repeated using four processor cores, so that open source and proprietary

RDBMS products could be compared in a multi-core environment. Finally, the measure

of scale-up from one processor core to four processor cores indicated the scalability of

open source and proprietary RDBMS products.

The dependent variables measured were the completion times required for a

selected RDBMS (independent variable Xd) and for an assigned number of processor

cores (independent variable Xp) to perform each benchmark case test (independent

varaible Xt) during a benchmark case test run (independent variable Xr). The benchmark

case was run for each database product Xd, once with one processor core (Xp=l) and once

with four processor cores (Xp=4). The benchmark case consists of three tests: the batch

load of the data (Xt=l), processing transactional updates (Xt=2), and analytical query

processing for report generation (Xt=3). Each test Xt was run 10 times (Xr takes on values

1 through 10). The duration of a test run for a given Xd, Xp, Xt, and Xr was recorded as

the dependent variable Yduration-d,p,t,r-

To make sure that the environment was the same at the start of each test, the host

server was rebooted before each benchmark test, to ensure that no data was cached in a

filesystem. Additionally, the data to be loaded into the database was the same for each

test. At the start of the database load, the database was empty. The database was then

loaded with data from a predetermined data file that was the same for all benchmark case

tests. Once the load was completed, the online transaction processing began. The online

www.manaraa.com

56

transaction processing consisted of a predetermined number of random transactions

performed in parallel by a predetermined number of drivers. Once the last online

transaction had been processed, the analytical processing began. The analytical

processing consisted of a predetermined, non-random number of reports which were

performed in parallel. When the last report completed, the benchmark case test recorded

the total duration of the test and the test ended.

Once all of the raw data for Yduration-d,P,t,r was collected, it was combined into

intermediate construct variables and then into the final construct variables representing

the performance and scalability of open source and proprietary RDBMS products.

The first intermediate construct variable is the normalized average duration, Ynavg-

d>p,t, which is computed by taking the average duration of the benchmark case test runs for

a given database product Xa, number of processor cores Xp, and benchmark case test Xt,

normalizing it by dividing it by the equivalent score for MySQL, and multiplying by 100.

Thus, MySQL's numbers were 100.000 for each test, and the other database products

were measured relative to MySQL, with faster products scoring less and slower products

scoring more, because the values were derived from duration. Data was recorded to three

decimal places of precision, which was sufficient to indicate differences between scores.

Normalized average duration was used because each of the three tests require

different amounts of time to complete, and the next intermediate construct variable,

performance, is a weighted average of the normalized average durations. The formula for

the performance (Yperf-d,p) of a given database product Xd and number of processor cores

Xp is given as Yperf-d,p = (0.15)Ynavg.d,p>i + (0.55)Ynavg-d,p,2 + (0.3)Ynavg.diPj3. Yperf-d,p weights

the batch processing test with 15% of the final value, the transaction processing test with

www.manaraa.com

57

55% of the final value, and the report generation test with 30% of the final value. The

percentage weights were selected because they are similar in relative importance to the

three types of load frequently used in production applications. Because each test is

normalized to MySQL, the YnaVg-d,p,t scores can be added together and still maintain their

weights. The scalability (Ysca]e-d) of a given database product Xd is computed as the ratio

of the performance with four processor cores divided by the performance with one

processor core, as given by the formula Yscaie-d = Yperf-d,4 / Yperf.d,i.

From the performance (Yperf-d,p) and scalability (Ysca]e_d) scores the values

necessary to answer the research questions were computed. The performance of

proprietary RDBMS products with one processor core, Ypr0p.perf-i, was the average of the

values Yperfd,! for those database products that are proprietary. Similarly the performance

of open source RDBMS products with one processor core, Yopen-perf-i, was the average of

the values Yperf_d,i for those database products that are open source. A statistical analysis

of Yopen_Perf-i and Yprop-perf-d,i using the t statistic answered the primary research question.

Similarly, the performance of proprietary RDBMS products with four processor

cores, Yprop-Perf-4, was the average of the values Yperf-d,4 for those database products that

are proprietary and Yopen-perf-4 was the average of the values Yperf-d,4 for those database

products that are open source. A statistical analysis of Yopen-perf-4 and Yprop_perf-4 using the /

statistic answered the second research question.

Finally, scalability of proprietary RDBMS products, Yprop_scaie, was the average of

the values Yscaie-d for those database products that are proprietary. Yopen-scaie was the

average of the values Yscaie-d for those database products that are open source. A

www.manaraa.com

58

statistical analysis of Yopen-scaie and Ypr0p-scaie using the / statistic answered the third

research question.

For the primary research question, the number of processor cores, Xp, was held at

1. Thus there are only three independent variables, the RDBMS, Xa, the test, Xt, and the

test run, Xr. The three variables Xj, Xt, and Xr can function as one variable, as any given

test run Xr will be for a specific RDBMS Xd and test Xt. As a result, for the primary

research question, there is no need for ANOVA to test for interactions among the

independent variables. The resulting derived variables, Ypr0p-perf-i and Yopen-Perf-i, required

an analysis of two random variables, using techniques described in chapter 8 of Aczel

and Sounderpandian (2002). Using a 95% confidence interval (a=0.05) it can be

determined whether or not Yopen-Perf-i
 > = Yprop.perf-i. In particular, the two means are

compared using the t statistic. The populations are based on independent samples and

thus expected to be normally distributed. As different RDBMS products may vary, it is

not expected that their variances will be equal, and the homogeneity of variances were

not be tested. Each sample is independent. The first research question, comparing the

performance of proprietary and open source database products with one processor, is thus

equivalent to the hypothesis that Yprop_Perf-i - Yopen-perf-i < = 0, because a lower score

considered better.

To address the second research question regarding performance with four

processors, similar techniques are used, but with Xp held at 4. Thus the second research

question is equivalent to the hypothesis that Yprop-perf-4 - Yopen-Perf-4
 < = 0.

When examining the third research question regarding scalability, the scalability

scores for proprietary (Yprop_scaie) and open source (Yopen.scaie) RDBMS products are

www.manaraa.com

59

computed. An interesting problem occured when computing the variance of a ratio of

random variables due to the lack of closed form solutions. However, an estimate for the

variance is available using the technique described by Kalton (1983), where the variance

of a ratio of independent normal random variables A and B is given as (1/|J.B) times

9 '7 9 1/'?

[OA +(|WHB) OB] • Scalability of a database is measured by comparing the performance

with four processor cores to the performance of one processor core, Ysca]e-d = Yperf-d,4 /

Yperf-d,i- An analysis of two random values was performed to determine, at the 95%

confidence level, if Yopen-scaie < = Yprop.scaie. The t statistic was used to answer the third

research questions using the hypothesis that Yprop_SCaie - Yopen-scaie<= 0. A lower value

represents greater scalability.

There were some assumptions made with the benchmark case tests. First, given

the same starting conditions, computers will generally tend to perform a task in the same

amount of time. The batch load and report generation tests, in particular, having no

random element, tend to have low variances in run time. The transaction processing tests

have a random element and thus have more variance. The variance of the transaction

processing test is reduced by the large number of transactions performed during the test,

so variances were expected to be low, and thus only a small number of runs were made

for each benchmark case test.

The benchmark case was assumed to be runnable in a reasonable amount of time.

Given that there were six database systems to test, with two amounts of processor cores,

and 10 runs per benchmark case test, each test was run 120 times. Since there were three

different tests (batch load, transaction processing, and report generation), there were a

total of 360 runs. In order to complete the research in a timely manner, the benchmark

www.manaraa.com

cast test runs needed to be able to complete in a relatively short amount of time. Thus

early in the research phase the size of the test data and the number of transactions in the

transaction processing test were adjusted before the official scoring benchmark cases

were run.

It is further assumed that a benchmark case can be adjusted to suit an individual's

own preferences regarding the valuation of the weights of the three benchmark test scores

when measuring performance. A technology manager who does more transaction work

may prefer, for example, to have the transaction processing normalized average be

weighted at 80% of the performance score. The percentages used in this research were

chosen to fit the author's own observations of real production systems.

Before analyzing the results of the experimental data, some comments need to be

made as to the selection of the sample size for the experiments, which were selected after

doing a power analysis of the test. Increasing the sample size while holding a and effect

size constant will increase the power of the experiment. Increasing the sample size also

reduces the variance. Theoretically, if one could increase the sample size to include the

entire population, then variance would be reduced to zero; however, it would no longer

be an experiment at that point. Realistically, there are cost constraints that limit the

sample size to a small fraction of the population in most cases.

In Dyck (2002) and Strandell (2003), the benchmark methodology used involve

running a benchmark test until a steady state was achieved; thus, each benchmark test

was only run once. They did not treat the benchmark testing like an experiment. They

also did not make any judgments as to whether the differences in the scores were

www.manaraa.com

61

statistically significant. As a result, a power analysis of their benchmark testing would be

meaningless.

Using an online power analysis tool from Lenth (2006), the number of necessary

runs can be estimated. One of Lenth's tools examines confidence interval for one mean.

Using a sample size of 10, a confidence interval of 95% (a = 0.05), and estimating the

variance to be 0.05, the margin of error will be 0.03577. It is not possible to know the

variance ahead of time, but computers tend to give very similar results when running

repeated benchmark cases, so a low variance should be a safe assumption.

Another tool on Lenth's site is a one-sample t-test. If the variance is assumed to be

0.1, the difference of the means is 0.15 or more, the sample size is 10, and a = 0.05, then

power = 0.9873. If the difference of the means is much higher, power rapidly approaches

1. The t-test was chosen because the data was expected to be normal and the sample

variances would be known. In addition, the variances were expected to be similar. When

the results from the testing came in, the variances were indeed similar.

From the results using the two tools on Lenth's site, it would seem that a sample

size of 10 should be sufficient. The variances were expected to be low, as computers tend

to give similar results when performing the same tasks in repeated runs. During the actual

run of the benchmark case tests, variances were very low. In no cases were the variances

high enough to lead to an uncertain result when using the t-statistic to compare database

products.

For comparison to other research, in Ailamaki, DeWitt, Hill, & Wood (1999), the

standard deviation was less than 5%, so the variance may be assumed to be about 0.20.

The differences between the means was stated to be significant, so if one assumes that to

www.manaraa.com

62

be 0.2 or more, then it would only take a sample size of 10 to give (using Lenth's one

sample t-test tool) a power of 0.8031. In their research however, they opted to keep

running benchmarks over and over until the variance was small enough that the

differences between the means was significant. They did not state explicitly how many

runs they used, but if we assumed they increased the sample size from 10 to 20, the

power increases to 0.9886. The researchers did not discuss confidence intervals or power,

so it is possible they were not that rigorous in the statistical analysis of their benchmark

results.

Methodological Assumptions, Limitations, and Delimitations

The construct validity is good for the environment selected. The benchmark is

measuring the performance of a RDBMS in one particular environment, and the

measurements reflect only the tasks that make up the benchmark case. Different people

may want to adjust the benchmark case, or run an entirely different benchmark. Others

may prefer a different operating system or hardware platform.

The internal validity of the research should be strong due to the method used. In

particular, the benchmark tests should be able to reproduce the results by simply running

through the procedures again. Computer programs can be re-run as many times as

desired, so the benchmark testing could be reproduced as needed. Computer performance

has almost no variance when measuring benchmark case test runs and starting from the

same initial conditions.

Regarding external validity, one has to remember that the performance of a

RDBMS under a benchmark may not be indicative of its performance in a given

production environment. Different environments have different technical needs, and the

www.manaraa.com

63

particular features of one RDBMS may make it a superior performer over another. For

example, a database system at one company may be used mostly for transactional

processing, while at another company, a different system may be used mostly for the

generation of reports. Users at one company may need to do only simple database

queries; users at another company may require complex analytical processing. Another

consideration is software; most RDBMS products operate in an established environment

with a lot of code written to meet that product's particular syntax. The personnel in place

also will greatly affect the performance, as an expert in one RDBMS may not be able to

properly tune a RDBMS from a different vendor. An expert database administrator can

greatly tune a RDBMS using caching algorithms which can result in vastly improved

performance for a particular kind of query, an action that has been used in the past to alter

benchmark results (Coffee, 2001). As a result, the results of the benchmark case testing

should not be used a sole criterion for which RDBMS is more appropriate for a given

setting. It is only one factor amongst many to consider.

The proprietary RDBMS products were originally developed for other operating

systems, and then later ported to Linux. As a result, their performance on Linux may not

be as optimal as on their original platforms. The database vendors continue to develop

and improve the performance of their products on Linux. Linux itself is undergoing some

changes to improve its threading performance to make better use of multi-core systems.

The benchmark case compares the performance of the RDBMS products on Linux, and

individual products may perform better on other platforms.

The benchmark tests were performed on a specific Linux server using a quad-core

Intel processor. The performance of the database products on other platforms and

www.manaraa.com

64

configurations may vary. In particular, very large configurations with several processors

may give a different result, as open source products generally target more common and

affordable configurations.

The size of the test data is another limitation. Database products may perform

differently on datasets that are significantly smaller or larger than the sample set used

here. Also, on systems where the database will fit completely within the memory cache,

one should expect different results, as the disk input/output operations would no longer

be a large factor in the performance of the system.

Another limitation regarding benchmark case testing is that most RDBMS

products are continuously under development, with new features, functionality, and

performance enhancements coming out each year. As a result, any RDBMS product that

does not perform well in the present may be well improved in the future. The results of

the benchmark case testing are only valid for the versions of the RDBMS products tested;

later versions may have different performance and scalability.

Ethical Assurances

The benchmark case tests are performed on neither human nor animal subjects, so

there are no concerns as to the ethical treatment of test subjects. No confidential data is

used in the benchmark case tests; the test data is randomly generated. The RDBMS

software to be used in the benchmark case tests is publicly available. However, certain

proprietary RDBMS vendors may not want an unfavorable test score published in

association with their trademarks, and hence the proprietary RDBMS vendor names were

not identified with the specific experimental results, which were instead be identified by

the names Database A, Database B, and Database C.

www.manaraa.com

65

It is important to mention that every database load is different, and although one

database may score higher in the benchmark case tests, it is possible that for a given

customer's special needs, another database may be the better performer. Furthermore,

database systems support a wide range of tuning options that can affect the system

performance. In fact, competitive tuning from the competing RDBMS vendors led to

making the TPC-A and TPC-B benchmarks obsolete (Levine et. al., 1993). The purpose

of this research is not to provide a new definitive benchmark; the work by the

Transaction Processing Performance Council (1992) would be beyond the scope of this

research. The goal of this study is to test whether the modern open source RDBMS

products are statistically equivalent in performance to their proprietary alternatives, given

the experiment's operating system and hardware platform.

Summary

A benchmark case suite of tests was constructed to enable the comparison of the

relative performance and scalability of open source and proprietary RDBMS products.

This suite enabled the measurement of different aspects of performance, divided into

three areas: batch load, transaction processing, and report generation. All of the tests were

run on the same hardware and operating system to ensure a fair comparison and reduce

the effects of external factors. The database and tests were designed to simulate a real

application. Data was collected from each test for every database examined. The results

were normalized and then compared to provide an analysis of the relative performance

and scalability of the various database products.

www.manaraa.com

66

CHAPTER 4: FINDINGS

The benchmark case test suite was run on six RDBMS products. For each

database system, the batch load, transaction processing, and report generation tests were

run 10 times with the system set to one processor core, and then 10 more times using four

processor cores. The database systems representing open source RDBMS products were

MySQL, PostgreSQL, and Firebird. The proprietary RDBMS products tested were

randomly assigned the names Database A, Database B, and Database C. The benchmark

values were then derived from this raw data, providing values for the performance of

each system using one processor core and four processor cores.

The primary research question, comparing the performance of open source

database products to proprietary database products on a system using one processor core,

was addressed by averaging the scores for the open source and proprietary database

products, respectively. The secondary research question was addressed in a similar

fashion, using the performance numbers generated with four processor cores. The third

research question compared the scalability of open source database products and

proprietary database products by averaging the scalability of the individual products in a

similar way to the performance comparison.

After the research questions were addressed, further analysis of the data was

performed. This analysis described how the individual database products compared to

each other. Both the overall score and the scores of individual tests were examined. Each

product's strengths and weaknesses were then described.

www.manaraa.com

67

Results

The first RDBMS tested was the open source product MySQL. The values in

Table 2 are the duration of the each test run in seconds. Lower numbers indicate better

performance, because that means the test completed faster. Each test was independent of

all other tests, as the database and host computer was restored to the same condition

before each test. The results for the four processor tests clearly show some scalability, as

the average durations decreased for all three tests.

Table 2

Benchmark Case Test Results for MySQL

1 Processor 4 Processors

Run

1

2

3

4

5

6

7

8

9

10

M

SD

Load

7341.067

7338.812

7317.768

7319.580

7336.400

7329.463

7325.987

7335.947

7328.764

7315.200

7328.899

9.186

Transact

1000.384

986.495

1067.407

1074.973

1000.923

1051.456

1258.084

1095.969

1018.811

1050.845

1060.535

78.250

Report

2171.650

2168.900

2176.624

2168.284

2170.121

2171.027

2164.565

2161.871

2162.720

2160.168

2167.593

5.155

Load

6115.579

6120.227

6125.197

6117.780

6144.934

6136.875

6109.646

6120.411

6124.702

6109.059

6122.441

11.292

Transact

982.809

1044.685

929.285

954.250

950.182

913.952

890.806

946.428

948.495

946.275

950.717

41.253

Report

1314.101

1377.874

1335.083

1367.676

1252.035

1293.828

1349.081

1343.779

1348.625

1325.243

1330.732

36.961

www.manaraa.com

68

In Table 3, the results for PostgreSQL are displayed. Like all other RDBMS

products, PostgreSQL displayed some scalability by improving its performance times

when the number of processor cores was increased from one to four. PostgreSQL

generally outperformed MySQL in all three tests, which was expected given its long

history and maturity.

Table 3

Benchmark Case Test Results for PostgreSQL

1 Processor 4 Processors

Run

1

2

3

4

5

6

7

8

9

10

M

SD

Load

7142.623

7135.269

7139.263

7142.648

7142.202

7129.716

7167.695

7130.292

7155.040

7205.094

7148.984

22.767

Transact

759.968

801.655

780.662

844.259

879.241

821.882

776.881

847.701

822.531

869.077

820.386

40.317

Report

1754.341

1720.450

1706.252

1765.463

1650.260

1788.656

1647.763

1642.241

1780.668

1792.098

1724.819

60.483

Load

5980.586

5960.234

5977.531

5957.169

5967.698

5980.632

5966.340

5996.537

5988.692

5988.484

5976.390

13.113

Transact

698.039

752.265

895.484

720.922

739.860

817.293

788.824

802.732

731.408

681.986

762.881

64.072

Report

1070.068

1050.958

1097.314

1035.863

992.061

1110.021

1122.986

1063.312

1090.703

1045.314

1067.860

39.150

Firebird did not perform nearly as well as PostgreSQL and MySQL. For example,

using one processor core, the batch load test was 48% slower than MySQL and 52%

slower than PostgreSQL. The transaction processing test was 4.5% slower than MySQL

www.manaraa.com

69

and 35% slower than PostgreSQL. The report generation test was 48% slower than

MySQL and 86% slower than PostgreSQL. This may be the result of weak developer

support in the open source community, or a weakness in its overall architecture. Table 4

has the results for the Firebird RDBMS.

Table 4

Benchmark Case Test Results for Firebird

Run

1

2

3

4

5

6

7

8

9"

10

M

SD

Load

10962.195

10763.755

10907.235

10800.005

10916.876

10818.974

10940.275

10864.906

10964.951

10802.966

10874.214

73.915

1 Processor

Transact

1076.200

1113.700

1007.934

1112.657

1141.709

1076.155

1129.909

1160.912

1118.727

1145.591

1108.349

44.766

Report

3318.150

3288.241

3180.650

3143.817

3294.253

3146.634

3167.219

3149.617

3163.366

3298.748

3215.069

74.120

Load

9128.069

8212.819

9165.509

8176.146

9177.886

8228.598

9163.934

8223.832

9341.931

8214.156

8703.288

521.993

4 Processors

Transact

920.340

872.904

892.417

914.434

892.430

874.289

889.386

831.808

870.331

834.869

879.321

29.327

Report

2348.895

2319.481

2325.369

2324.709

2328.249

2323.482

2323.833

2311.027

2317.843

2320.821

2324.371

9.865

The results for Database A are shown in Table 5. The batch load times for this

database were 103% slower than MySQL when using one processor core and 26% slower

when using four processor cores. The transaction processing times were 40% faster than

MySQL with one processor core and 47% faster with four processor cores. The report

www.manaraa.com

70

generation times were 52% slower than MySQL with one processor core and 120%

slower with four processor cores. The batch load times improved dramatically when

using four processor cores, completing in almost half the time (7,691 seconds versus

14,843 seconds).

Table 5

Benchmark Case Test Results for the Database A

Run

1

2

3

4

5

6

7

8

9

10

M

SD

Load

14582.023

14467.723

14734.050

15193.960

14879.807

15185.930

15105.833

14598.321

15236.147

14455.336

14843.913

315.653

1 Processor

Transact

612.840

656.124

616.912

628.670

628.720

649.394

620.545

607.427

578.759

682.499

628.189'

28.821

Report

3558.865

3182.215

3099.405

3378.876

3093.298

3496.806

3632.548

3020.550

3290.122

3303.315

3305.600

210.100

Load

7697.136

7708.526

7695.496

7670.693

7688.222

7683.682

7682.788

7701.761

7681.999

7706.392

7691.669

12.181

4 Processors

Transact

452.615

507.897

502.537

506.494

489.949

506.400

468.304

541.566

510.816

523.479

501.006

25.580

Report

2706.898

3215.706

2868.388

2852.063

2900.397

3039.899

2980.262

2879.083

3021.133

2788.977

2925.281

144.267

Database B outperformed MySQL in both the transaction processing test and the

report generation test, but it was a 35% slower in the batch load test when using one

processor core and 15% slower when using four processor cores. Database B also showed

www.manaraa.com

71

a significant decrease in durations when going to four processors. The results for

Database B are listed in Table 6.

Table 6

Benchmark Case Test Results for the Database B

1 Processor 4 Processors

Run

1

2

3

4

5

6

7

8

9

10

M

SD

Load

9899.576

9819.985

9807.253

9767.499

10049.453

9909.671

9744.843

9749.717

9897.232

10021.257

9866.649

108.134

Transact

313.202

316.009

329.520

318.472

304.963

315.811

295.662

553.699

771.953

563.602

408.289

163.728

Report

831.460

434.783

425.166

438.503

488.737

449.354

523.219

421.953

493.121

398.284

490.458

125.745

Load

7071.768

7110.433

6995.902

7068.226

7166.436

6993.603

6958.228

6905.965

7189.039

7002.834

7046.243

91.108

Transact

204.195

205.130

221.915

202.501

227.477

190.545

235.452

192.872

199.217

186.786

206.609' '

16.401

Report

376.768

401.915

500.467

396.722

290.623

385.504

427.612

291.846

443.968

369.393

. 388.482

63.965

Finally, the results for Database C are listed in Table 7. Database C had batch

load times that were comparable to MySQL, but the transaction processing times were

67% slower when using one processor core and 14% slower when using four processor

cores. The report generation times significantly much faster than all other RDBMS

products. This may be because the default tuning of this database product is better

optimized for query than for transactions. Database C also showed a significant

www.manaraa.com

72

improvement in speed when running on four processor cores compared to one processor

core, running the batch load test 17% faster, the transaction processing test 38% faster,

and the report generation test 22% faster.

Table 7

Benchmark Case Test Results for the Database C

Run

1

2

3

4

5

6

7

8

9

10

M

SD

Load

7230.853

7230.573

7222.383

7221.906

7245.330

7265.503

7217.732

7225.413

7227.421

7216.032

7230.315

14.879

1 Processor

Transact

1794.601

1788.067

1747.011

1662.639

1755.433

1739.719

1809.125

1867.167

1727.128

1843.963

1773.485

59.884

Report

345.917

345.027

340.569

321.843

356.955

348.941

329.497

338.320

329.525

350.572

340.717

10.991

Load

6005.025

5999.362

5999.994

5991.588

6010.721

5999.296

5997.989

5994.920

6092.024

5994.043

6008.496

29.858

4 Processors

Transact

1241.378

936.962

1336.813

891.308

1186.276

886.703

956.193

1230.311

1090.551

1091.652

1084.815

161.471

Report

267.011

269.695

267.999

262.738

267.741

270.510

270.717

264.561

265.177

267.206

267.336

2.610

The benchmark results for one processor are summarized in Table 8. The mean

and standard deviation for a given test and RDBMS were normalized into YnaVg-d,i,t by

dividing the score by MySQL's score and multiplying by 100. As before, a lower score

reflects faster performance, so Database B had the best benchmark score under one

processor, and Firebird had the worst.

www.manaraa.com

73

Table 8

Database Benchmarks for One Processor

open source proprietary

Test

Load

* navg-d, 1,load AVI

I navg-d,I,load ^-L'

Transact

* navg-d, 1,trans AVI

* navg-d, 1,trans ̂ ^ J

Report

I navg-dj,report AVI

1 navg-d, 1,report ^AJ

Yperf-d.l M

Yperf-d.l S D

MySQL

100.000

0.125

100.000

7.378

100.000

0.238

100.000

4.059

Postgre-

SQL

97.545

0.311

77.356

3.802

79.573

2.790

81.049

2.253

Firebird

148.374

1.009

104.509

4.221

148.324

3.419

124.233

2.543

A

202.539

4.307

59.233

2.718

152.501

9.693

108.709

3.333

B

134.627

1.475

38.498

15.438

22.627

5.801

48.156

8.670

C

98.655

0.203

167.226

5.647

15.719

0.507

111.488

3.110

The benchmark for open source RDBMS products when using one processor core

is represented by Yopen-perf,i • This benchmark is the average of the means Yperf-d,i for the

open source database products. The average of the standard deviations was computed as

9 9 9 1/9
[(^MySQL ~*~OPostgreSQL "^Firebird

)]/3. The proprietary RDBMS benchmark score for one

processor core was computed in a similar fashion. The t-test was used to compare the two

random variables. At an alpha of 5%, the open source RDBMS benchmark Yopen-Perf-i

(M=101.761, SD=1.764) was not shown to be significantly lower or equal to the

proprietary RDBMS benchmark Yprop-perf-i (M=89.451, SD=3.265), t(4)=5.745, p=0.452.

Thus, the performance of open source RDBMS products on a system with one processor

www.manaraa.com

74

core was not shown to be better than or equal to the performance of the proprietary

RDBMS products.

A similar result occurs when the system is set to run with four processors. In

Table 9 the benchmark results are listed. The Ynavg_d,4,t values were normalized to the

MySQL one processor values in order to maintain consistency with the rest of the results.

This was done by dividing the value by the corresponding MySQL one processor score

and multiplying by 100.

Table 9

Database Benchmarks for Four Processors

Test

Load

Ynavg-d,4.1oad M

I navg-d,4,load ^>LJ

Transact

* navg-d.4,trans M

* navg-d,4,trans ^ t v

Report

* navg-d.4.report 1V1

* navg-d.4.report oU

Yperf-d.4 M

Yperf-d,4 S D

MySQL

83.538

0.154

89.645

3.890

61.392

1.705

80.253

2.200

open source

Postgre-

SQL

81.546

0.179

71.934

6.042

49.265

1.806

66.575

3.367

Firebird

118.753

7.122

82.913

2.765

107.233

0.455

95.585

1.864

A

104.950

0.166

47.241

2.412

134.955

6.656

82.212

2.397

proprietary

B

96.143

1.243

19.482

1.546

17.922

2.951

30.513

1.242

C

81.984

0.407

102.289

15.225

12.333

0.120

72.257

8.374

www.manaraa.com

75

The benchmark for open source RDBMS products when using four processor

cores is represented by Yopen-perf,4- This benchmark is the average of the means Yperf-d,4 for

the open source database products. The average of the standard deviations was computed

using the same method as for one processor core. The proprietary RDBMS benchmark

score for four processor cores was computed in a similar fashion. The t-test was used to

compare the two random variables. At an alpha of 5%, the open source RDBMS

benchmark Yopen-perf-4 (M=80.804, SD=1.478) was not shown to be significantly lower or

equal to the proprietary RDBMS benchmark Ypr0p.Perf-4 (M=61.660, SD=2.933),

t(4)=l 0.096, p=0.405. Thus, the performance of open source RDBMS products on a

system with four processor cores was not shown to be better than or equal to the

performance of the proprietary RDBMS products.

The scalability benchmark results are listed in Table 10. Because the shorter

duration using four processor cores is divided by the longer duration using one processor

core, lower values for scalability represent more speedup. All of the proprietary database

systems had scalability scores that were better than the scalability scores of the open

source database systems. The standard deviation of the individual scalability scores was

computed by finding the variance of a ratio of two random variables (Kalton, 1983). The

benchmark for open source scalability is represented by Yopen.scaie and is computed as the

average of the scalability scores for the open source database products. The average of

the standard deviations was computed using the same method as for the performance

benchmarks. The scalability benchmark for proprietary database systems is represented

by Yprop-scaie and its mean and standard deviation were computed in a similar fashion. The

t-test was used to compare the two random variables. At an alpha of 5%, the open source

www.manaraa.com

RDBMS benchmark Yopen-scaie (M=0.798, SD=0.022) was not shown to be significantly

lower or equal to the proprietary RDBMS benchmark Yprop.scaie (M=0.679, SD=0.048),

t(4)=3.904, p=0.347. Thus, the scalability of open source RDBMS products was not

shown to be better than the performance of the proprietary RDBMS products.

Table 10

Scalability of the Database Systems

open source proprietary

Postgre-

MySQL SQL Firebird A B C

Ysca,e.dM 0.803 0821 0.769 0.756 0.634 0.648

Yscaie-dSD 0.039 0.047 0.022 0.032 0.117 0.077

In all three cases, the results favored the proprietary benchmarks. From the

viewpoint of the benchmarks, proprietary products, in general, were better at performance

and scalability than their open source competition.

Evaluation of Findings

Because proprietary database systems outperform open source database systems,

technology managers will be justified in selecting them when choosing a database

product, if all other factors are equal. In most cases, however, performance is not the only

concern; technology managers also have to be cognizant of the costs of the products and

their related services. The performance benchmark numbers were close, with the

proprietary systems running 12% faster under one processor core and 24% faster under

four processor cores. There are many applications where having a small increase in speed

would not be worth the much higher costs of going with proprietary systems.

www.manaraa.com

77

Because of the superior scalability of the proprietary database systems, the

performance difference between open source and proprietary database products increases

with the number of processor cores. Technology managers implementing projects on

larger systems with more processor cores will see proprietary database systems have

more of a performance advantage over open source database systems compared to

smaller applications that run on a small server with one processor core. The more

processors the server has, the greater the difference in performance between proprietary

and open source solutions, which is a strong argument in favor of proprietary RDBMS

products.

Open source database products do not have license fees, and thus the cost to

maintain them does not increase with the number of processor cores. Proprietary database

systems are licensed per processor core, and thus they have a linear increase in cost with

a less than linear increase in performance. Technology managers have to analyze their

own situation and determine whether the increase in performance is worth the increase in

cost.

When the performance data of individual database products was examined, the

general statement that proprietary database systems outperform open source database

systems no longer held true. As can be seen in Figure 2, MySQL and PostgreSQL were

faster than Database A and Database C when using one processor core. In this figure and

the following figures, lower bars reflect shorter duration and better performance, with

times normalized to a percentage of MySQL's performance with one processor core.

When using four processor cores, PostgreSQL was faster than Database A and had

overlapping confidence bars with Database C. While Database B clearly had the best

www.manaraa.com

78

performance, it might not be the incumbent product in a given organization. For example,

a manager who has licenses available for Database A may only want to compare

Database A to MySQL and PostgreSQL, both of which would give him better

performance. Alternately, a different manager who has licenses for Database B available

would not see any performance improvement by switching to a different database

product.

140

E
,0

D.

120

100

80

60

40

20

VA

I m

I
I

I
i

• 1 core

Q 4 cores

¥

I
&z

i
P
i I

MySQL PostgreSQL Firebird A

Database

Figure 2. Performance of database products when using one and four processor cores.

After examining the scalability of individual database products, the proprietary

database systems were shown to have more of an advantage over the open source

database systems, as can be seen in Figure 3. The only exception was Firebird, which has

similar scalability to Database A. Database A still had the advantage, because Firebird

started out with slower performance than Database A, and since the scalability of the two

systems is similar, it was unlikely that the performance of Firebird would ever catch up to

Database A. As a result, when scalability is a consideration for technology managers, the

proprietary database products were shown to provide more speedup.

www.manaraa.com

79

0.90

0.85

0.80

0.75

J2 0.70

0.65

0.60

0.55

0.50

J

1

J-

r

MySQL PostgreSQL Rrebird A B C

Database

Figure 3. Scalability of database products.

The performance benchmark test suite consisted of three tests which measured

different types of database activity, which were the batch load test, the transaction

processing test, and the report generation test. The six database products tested had

different strengths and weaknesses in the three different tests. Because no single product

had the best performance in all three tests, it would be beneficial for a technology

manager to adjust the weights of the tests. In this research, the weights chosen were 15%

for batch load, 55% for transaction processing, and 30% for report generation. A manager

of an online analytical processing application, for example, would be more concerned

with the query tests. A manager of such an application might choose weights of 10% for

batch load, 5% for transaction processing, and 85% for report generation, which would

lead to much different results in the benchmark. As there are an effectively unlimited

number of different combinations for weights, it was helpful to analyze the individual test

results separately.

www.manaraa.com

80

The batch load performance test results are shown in Figure 4. This test was

focused on insertion activity, similar to what occurs in a batch load from one system to

another, or in a recording system. MySQL, PostgreSQL, and Database C had the best

scores here. Database A was the slowest when running with one processor core, but its

performance improved dramatically with four processor cores. For this test, the open

source products were highly competitive, with MySQL and PostgreSQL performing as

well as or better than all of the other database products.

250

200

| 150

a.
-o 100
ra
o

50

yfy

I v<y i
'4..

• 1 core

E3 4 cores

P
w
y4.

Yffl

MySQL PostgreSQL Firebird A

Database

Figure 4. Batch load performance of database products.

The transaction processing test results are shown in Figure 5. This test consisted

of several different types of transactions that would insert, update, or delete data, often

while locking one or more tables. The RDBMS with the best lock manager and a superior

architecture for handling concurrent processing would complete the test in the shortest

amount of time and outperform the others. Here, both Database A and Database B

outperformed all of the open source database products. MySQL, for example, was more

than twice as slow as Database B when using one processor core, and more than four

www.manaraa.com

81

times slower when using four processor cores. Database C, however, was slower than all

of the open source database products, and should be avoided if possible for those

applications that rely heavily on transaction activity.

180

160

0
o
c
CD

E

140

120

100

80

60

40

20

0

• 1 core

Q 4 cores

7/A

w t i
%

I
7/s

p i
MySQL FbstgreSQL Firebird A

Database

Figure 5. Transaction processing performance of database products.

The report generation test results are shown in Figure 6. Here, Database C

outperformed all other systems. Because Database C performed poorly in the transaction

processing test and yet outperformed the competition in the report generation test further

emphasizes the need for a technology manager to select weights that are appropriate to

the application. For report generation, Database A was the slowest database system,

taking more time to complete than all of the open source products. The difference in

speed between the open source products and the proprietary products Database B and

Database C is significant, with the open source solutions being several times slower.

www.manaraa.com

82

180

160

140
a>
c 120
CD

E
o 100
CD

£ 80

| 60

40

20

rvvLi

1 1

%? / #

I 1 I
i

n 1 core

• 4 cores

MySQL FbstgreSQL Firebird A

Database

1

Figure 6. Report generation performance of database products.

All of the database systems had their strengths and weaknesses. Some were

stronger with a particular test, or had better scalability. All of the RDBMS products were

highly configurable and could be improved with complex performance tuning methods. A

highly experienced database administrator with skills in this area could greatly improve

the performance for a given application. As a result, small differences in benchmark

numbers may be less important than the overall skill of the database administrator.

Technology managers should consider the level of skill of the database administrators

available to them when considering making a choice between RDBMS products.

Summary

In general, the proprietary database systems tested had better performance and

scalability than the open source database systems. This general statement did not apply to

specific database products, as individual scores vary. Different products were stronger

based on the kind of application being tested. This research measured the performance of

RDBMS products under batch load, transaction processing, and report generation. The

www.manaraa.com

83

relative strengths and weaknesses of the database products varied with each test.

Technology managers should weight the results of the performance benchmarks

according to the needs of the application being implemented.

www.manaraa.com

84

CHAPTER 5: IMPLICATIONS, RECOMMENDATIONS, AND CONCLUSIONS

Technology managers need a way to measure the relative performance and

scalability of the various proprietary and open source database products available to

them. A suite of benchmark case tests was created to provide a tool for the use in

measuring performance and scalability. This suite was run against three proprietary

database products and three open source database products. The tests were all run on the

same hardware and operating system, to provide a fair comparison between the products.

The test platform was a Linux server, which prevented the testing of Microsoft SQL

Server. The results of the tests run in this research will quickly become outdated as new

versions of database software become available. New database products will also be

brought to market over time. Technology managers may use the techniques described in

this paper to do their own testing. What follows are the implications and

recommendations based on the findings of this research.

Implications

The t-test was used to compare the group of open source RDBMS products

against the group of proprietary RDBMS products. The t-test was selected because the

data sampled from multiple runs of the benchmarks was expected to be normal with low

variances, because computers generally perform the same task in the same amount of

time. This proved to be true in the results, and thus having only 10 runs per test was

satisfactory for the purpose of comparing the benchmark scores.

Proprietary database systems were 12% faster, on average, than open source

database systems when using one processor core. This answers the first research question,

on a server with one processor core, to what extent, if any, does the performance of open

www.manaraa.com

85

source RDBMS products, on average, equal or exceed the performance of proprietary

RDBMS products, on average, when run on the same operating system and hardware?

The answer is that open source RDBMS products do not equal or exceed the performance

of proprietary RDBMS products when running on a single-core system. The difference in

performance may not justify the higher costs of proprietary products, but that decision

depends on each individual technology manager's situation. For some technology

managers, a 12% difference in performance may not be enough to justify the higher costs

of using proprietary software.

When using four processor cores, the proprietary database systems were 24%

faster, on average, than the open source database systems. This answers the second

research question, on a server with four processor cores, to what extent, if any, does the

performance of open source RDBMS products, on average, equal or exceed the

performance of proprietary RDBMS products, on average, when run on the same

operating system and hardware? The answer is that open source RDBMS products do not

equal or exceed the performance of proprietary RDBMS products when running on a

system with four processor cores. The difference in performance was greater than with

one processor core, so the benefit of using proprietary RDBMS products appears to

increase as more cores are added to a system. Technology managers concerned about

performance on quad-core systems would get better results with proprietary RDBMS

products.

The scalability of proprietary database systems was 15% better than the

scalability of open source database systems. This answers the third research question, to

what extent, if any, does the scalability, from one processor to four processor cores, of

www.manaraa.com

86

open source RDBMS products, on average, equal or exceed the scalability of proprietary

RDBMS products, on average, when run on the same operating system and hardware?

The answer is that the scalability of open source RDBMS products does not equal or

exceed that of proprietary RDBMS products. Because the scalability of proprietary

products is superior, one would expect the difference in performance between proprietary

and open source RDBMS products to increase as more processor cores are added.

Technology managers looking to create large database systems with many processor

cores will get better performance from the proprietary products.

The proprietary database systems were shown to be superior for all three research

questions. For technology managers not concerned with licensing costs, the faster

proprietary products are a superior solution. Cost-sensitive technology managers have to

consider the benefits of the small increase in speed against the much higher costs of the

proprietary database licenses. For some managers, the difference in performance may not

justify the cost of proprietary RDBMS licenses.

Open source RDBMS products were closest in performance to the proprietary

RDBMS products when operating on a system with one processor core. This makes them

a better candidate for consideration in an environment with an array of lightweight

database servers. Because proprietary RDBMS licenses are paid per processor core,

implementing a large grid of small database servers can be very expensive when using

proprietary RDBMS software. Some proprietary database solutions become very

expensive as newer four-core and eight-core processors become available (Pallatto,

2005).

www.manaraa.com

87

The benchmark case test suite measured three aspects of database performance:

batch load, transaction processing, and report generation. Each database product had its

strengths and weaknesses, as reflected in the individual test scores. The individual scores

are more relevant than the general scores when a technology manager needs to compare

the performance of two specific database products. Because each product scored

differently under each test, the weights used in the benchmark greatly affect the outcome.

If different weights are used, the results could favor different database products.

The results of the individual RDBMS benchmark scores indicate that the poor

performance of the Firebird RDBMS impacted the benchmark results for open source

RDBMS products. As can be seen in Figure 2, MySQL and PostgreSQL, when operating

with one processor, actually had better performance than Database A and Database C.

With four processors, the performance of MySQL and PostgreSQL was similar to that of

Database A and Database C. Database B, however, had the best performance of all of the

products.

Unfortunately for the open source RDBMS products, none of them compared

favorably to the proprietary RDBMS on an individual basis. The only one that came close

was Firebird, which had similar scalability to Database A. Firebird starts out with poor

performance however, so being able to scale does not necessarily help it when comparing

against other RDBMS products.

The various RDBMS products performed differently for each benchmark case

test. In the batch load performance test, MySQL and PostgreSQL outperformed Database

A and Database B, and had similar performance to Database C. So for an application that

is mostly oriented around batch load, MySQL and PostgreSQL would actually be

www.manaraa.com

88

superior solutions. One examples of a batch load application is an action logging system,

where events are recorded for auditing purposes but infrequently queried.

The transaction processing test had interesting results for open source RDBMS

products. The performance of all three open source database products in the transaction

processing test was better than Database C. Database A and Database B, however, had

much better performance than all of the open source products. This is a good example of

how individual database scores give much different results than the general scores for the

group.

In the report generation benchmark case test, Database B and Database C

performed much better than the other four database products. MySQL and PostgreSQL

performed better than Database A. Although proprietary database systems outperform

open source database systems as a group, the performance of individual database

products varies.

Recommendations

RDBMS license fees can be very expensive, as these products are licensed per

core. Technology managers looking to implement a large network of database systems

could face very large capital expenditures when purchasing licenses to proprietary

database products. For some applications, the performance increase achieved by using

proprietary database products could justify the cost. Other technology managers may not

be sensitive to price for other seasons, due to site licenses or an excess inventory of

licenses. In these cases, technology managers would be wise to select proprietary

database products and take advantage of their superior speed and scalability.

www.manaraa.com

89

Technology managers who have applications with specific types of loads may

find it advantageous to select MySQL or PostgreSQL in certain cases. The results of the

batch load benchmark case test indicated that MySQL and PostgreSQL would give better

performance than Database A and Database B, and similar performance to Database C. A

technology manager with an application that does a lot of batch load processing should

consider MySQL and PostgreSQL.

The transaction processing benchmark case test results indicated all three open

source database products to be superior to Database C. Database A and Database B gave

better performance than all of the open source products. A technology manager looking

for transaction processing performance should avoid Database C, regardless of the cost.

The open source products would only be a good fit if the costs of Database A and

Database B was too expensive to consider.

The difference in performance for report generation was significant. It would be

hard to justify open source solutions for applications doing this kind of work unless

performance was not a major factor. If a technology manager already had Database A

installed, however, then it would be possible to increase performance by adopting a low-

cost open source solution, because only Database B and Database C gave superior

performance.

If a technology manager had the time and resources to run the benchmark case

tests on the technology manager's own systems, then more relevant results could be

obtained. By running this benchmark on different hardware with different numbers of

processing cores and a different version of Linux, different and more relevant results may

be obtained. Furthermore, the benchmark could compare specific, named versions of

www.manaraa.com

90

proprietary RDBMS products instead of the blind names for Database A, Database B, and

Database C.

For those managers who are under pressure to reduce technology costs, selecting

an open source database product could save tens of thousands of dollars per system.

Although the performance of these products is less than the proprietary database

products, the difference may not be significant enough to justify the cost. The technology

manager would also be free to add additional processor cores and to install the open

source RDBMS products on other servers without incurring additional fees. This gives

the technology manager the freedom and flexibility to respond to changes in demand.

The performance of the database products can also be improved through fine-

tuning by expert database administrators. One difference between these database products

was the difficulty of installation. MySQL was the easiest to install and configure, while

the proprietary systems proved to be more challenging. The challenges with installing

and fine-tuning RDBMS products should be considered when comparing products. This

qualitative difference is difficult to measure, and may not be a factor at all if a technology

manager has a database specialist available to do this kind of work. In a smaller

organization such specialists may be rare and hard to obtain.

The benchmark tests performed in this research were run on one specific server,

using versions of the RDBMS software that were current at the time the measurements

were taken. Any given technology manager is likely to work with different hardware and

operating systems. Newer versions of open source and proprietary database products

come out every year, possibly providing improved performance and scalability.

Individual database systems can also be tuned for better performance if the services of an

www.manaraa.com

91

expert database administrator are available. These factors could all lead to different

benchmark results.

To provide a more relevant measurement, the benchmark case tests can be run on

a technology manager's own hardware and operating systems. The test weights in the

benchmark can be adjusted to reflect the activity of a specific application. The newest

versions of each database product can be used in each manager's own tests, and the local

database administrator can improve the performance by tuning the database. Following

these steps will result in benchmark measurements more relevant to a specific

environment.

As systems with more processor cores become available, future research may be

done by re-running this benchmark on database products, measuring the performance

improvement as processor cores are added. It is possible that the scalability of database

products decreases as more processor cores are added to a system, due to increased

contention for shared resources. The scalability of database products may also be affected

by the underlying operating system, which can be changed in future testing. If the tests

are run on a Microsoft Windows server, then Microsoft SQL Server could be compared

as well.

Another area for future research is an examination of the performance and

scalability of other products, including object-oriented database products, embedded

database systems, and hierarchical database systems. Newer versions of PostgreSQL

from EnterpriseDB may provide different results than the original source. MySQL, which

can use multiple data storage engines, can be tested separately with each engine. New

database products will be introduced to the market over time, giving technology

www.manaraa.com

92

managers more options to consider. As the options increase, the need for relevant

benchmarks becomes even greater.

Conclusions

Technology managers will find superior performance using the proprietary

database products. As a general statement, the performance and scalability of open source

products does not surpass the proprietary database products. If technology managers

examine individual products more closely, they will find some open source products

compare well for certain kinds of tests. The costs of the proprietary products may be a

significant factor for some technology managers, who may find the difference in

performance not worth the higher cost of the proprietary database products. By using the

techniques described in this paper, the tests can be customized to more closely reflect an

individual technology manger's application load.

www.manaraa.com

93

REFERENCES

Aberdour, M. (2007). Achieving quality in open source software. IEEE Software, 24(1),
58-64. Retrieved November 23, 2007, from ABI/INFORM Global database.
(Document ID: 1326207451).

Aczel, A. D. & Sounderpandian, J. (2002). Complete business statistics (5th ed.). (pp.
282-371). Chicago, IL: Irwin.

Alfs, G. (2007). News flash: Intel details upcoming new processor generations. Retrieved
July 7, 2007, from
http://www.intel.com/pressroom/archive/releases/Intel_New_Processor_Generatio
ns.pdf

Ailamaki, A. G., DeWitt, D. J., Hill, M. D., & Wood, D. A. (1999, September). DBMSs
on modern processors: Where does time go? The VLDB Journal, 266-277'.

AMD (2007, November 30). AMD demonstrates world's first native quad-core X86
server processor. Retrieved July 7, 2007, from http://www.amd.com/us-
en/Corporate/VirtualPressRoom/0,,5110454313744-114496,00.html

Apicella, M., Biggs, M. (2000, April 17). Uncovering database benchmarks. InfoWorld,
22, 63-64.

Biggs, M. (2002, September 23). Finding an opening. InfoWorld, 24, 19-20.

Boulton, C. (2003, June 16). Are open source databases following Linux's footsteps?
CIO Update. Retrieved August 18, 2006, from
http://www.cioupdate.com/trends/article.php/2222231

Campbell, S. (2002). IBM solidifies Linux strategy. CRN, 1009, 12.

Caniano, S. (1988). All TP1 s are not created equal. Datamation, 34, 16 (51-54).

Chabrow, E. (2008, January 15). The new IT worker shortage. CIO Insight. Retrieved
January 21, 2008 from http://www.cioinsight.eom/article2/0,1540,2248193,00.asp

Chen, A. (2002, July 8). Open source gets IT scrutiny. eWeek, 19.

Codd, E. F. (1970). A relational model of data for large shared data banks.
Communications of the ACM, 13, 377-387.

Coffee, P. (2001, November 19). Handicapping the hardware. eWeek. Retrieved June 5,
2006, from http://www.eweek.eom/article2/0,1759,1010924,00.asp

http://www.intel.com/pressroom/archive/releases/Intel_New_Processor_Generatio
http://www.amd.com/us-
http://www.cioupdate.com/trends/article.php/2222231
http://www.cioinsight.eom/article2/0
http://www.eweek.eom/article2/0

www.manaraa.com

94

Coffee, P. (2005, September 26). Reinventing enterprise technology. eWeek. Retrieved
July 7, 2007, from http://www.eweek.com/article2/0,l759,1862988,00.asp

Cohen, N. (2003, August 27). Blades, clusters, and big paybacks. Open: The strategic
guide to open source. Retrieved September 1, 2003, from http://www.open-
mag.com/936339824.shtml

Cornetto, J. (1998, September). IBM, Sybase latest to put RDBMS on Linux. Info World,
20(39), 14. Retrieved December 22, 2007, from ABI/INFORM Global database.
(Document ID: 34590667).

Cox, J. (2004, March). Open source database improvements grow. Network World,
27(11), 32. Retrieved December 6, 2007, from ABI/INFORM Global database.
(Document ID: 580863321).

D'Agostino, D. (2005, November 23). Open source turns strategic. CIO Insight, 7(60),
65-77.

DeWitt, D. J. (1993). The Wisconsin benchmark: Past, present, and future. In J. Gray
(Ed.), The benchmark handbook for database and transaction processing systems,
2nd ed. (pp. 269-308). San Mateo, CA: Morgan Kaufman Publishers.

Dickerson, C. (2003, May 19). If the glass slipper fits... InfoWorld, 25, 32.

Donston, D. (2002, July 8). Open-source enterprise. eWeek, 19.

Dyck, T. (2002, March 26). Clash of the titans: SQL databases. PC Magazine. Retrieved
June 5, 2006, from http://www.pcmag.com/article2/0,4149,4178,00.asp

Dyck, T. (2003, July 7). Database server clash revisitied. eWeek. Retrieved June 5, 2006,
from http://www.eweek.com/article2/0,1759,l 184846,00.asp

Ebert, C. (2007). Open source drives innovation. IEEE Software, 24(3), 105. Retrieved
November 23, 2007, from ABI/INFORM Global database. (Document ID:
1326654061).

Elmasri, R. & Navathe, S. (1994). Fundamentals of database systems (2nd ed.). (pp. 259-
260). Redwood City, CA: The Benjamin/Cummings Publishing Company.

Florescu, D., & Kossman, D. (2009). Rethinking cost and performance of database
systems. SIGMOD Record, 38, 1.

Gillespie, M. (2007, May 8). Transitioning software to future generations of multi-core.
Retrieved July 7, 2007, from
http://softwarecommunity.intel.com/articles/eng/1273.htm

http://www.eweek.com/article2/0,l759,1862988,00.asp
http://www.open-
http://mag.com/936339824.shtml
http://www.pcmag.com/article2/0,4149,4178,00.asp
http://www.eweek.com/article2/0,1759,l
http://softwarecommunity.intel.com/articles/eng/1273.htm

www.manaraa.com

95

Gray, J. (1993). Introduction. In J. Gray (Ed.), The benchmark handbook for database
and transaction processing systems, 2nd ed. (pp. 1-19). San Mateo, CA: Morgan
Kaufman Publishers.

Gray, J. & Nyberg, C. (1994). Desktop batch processing. Proceedings of the IEEE Spring
CompCon, 1994.

Groff, J. (2002). SQL: The complete reference (2nd ed.) (pp. 29-31, 920-921). Blacklick,
OH: McGraw-Hill Professional.

Hicks, M. (2002, August 19). Open-source databases hike enterprise appeal: Developers
improve support for transactions, recovery, replication. eWeek, 12.

Kalton, G. (1983). Introduction to survey sampling (p. 44). Thousand Oaks, CA: Sage
Publications.

Krill, P. (2002, September 23). IBM, MS reject MySQL: Open-source database growth
draws fire from industry stalwarts. InfoWorld. Retrieved August 3, 2003, from
http://www.findarticles.com

LaMonica, M. (2005). Database vendors eye open-source effect. CNETNews.com.
Retrieved July 31, 2005 from http://news.com.com/2100-1012_3-5785645.html

Lenth, R. V. (2006). Java applets for power and sample size [Computer software].
Retrieved January 24, 2007, from http://www.stat.uiowa.edu/~rlenth/Power

Levine, C, Gray, J., Kiss, S., & Kohler, W. (1993). The evolution of TPC-benchmarks:
Why TPC-A and TPC-B are obsolete. SFSC Technical Report 93.1, Digital
Equipment Corporation. Retrieved June 3, 2006, from
http://research.microsoft.com/~gray/papers/TPC_Evolution.doc

Loney, K & Kotch, G. (2000). Oracle8i: The complete reference (10th ed.). Berkeley,
CA: Osborne/McGraw-Hill.

Martens, C. (2007, July 27). SourceForge unveils the winners of the "open-source
Oscars". NetworkWorld. Retrieved December 6, 2007 from
http://www.networkworld.com/news/2007/072707-sourceforge-unveils-the-
winners-of.html

Matoria, R. K. & Upadhayay, P. K. (2002). Design and development of web-enabled
databases in libraries with special reference to RDBMS: selection of tools and
technologies. DES1DOC Bulletin of Information Technology, 22(4), 9-15.
Retrieved July 23, 2003, from WilsonSelectPlus.

Mears, J. (2005). Open source databases grow. Network World, 22, 34, 21 -22.

http://www.findarticles.com
news://News.com
http://news.com.com/2100-1012_3-5785645.html
http://www.stat.uiowa.edu/~rlenth/Power
http://research.microsoft.com/~gray/papers/TPC_Evolution.doc
http://www.networkworld.com/news/2007/072707-sourceforge-unveils-the-

www.manaraa.com

96

Mitchell, R. (2006, August 28). Solid-state disk: Soul of the new machines.
Computer-world, 40.

Niccolai, J. (2006, February 7). MySQL buys company, hires noted database architect.
NetworkWorld. Retrieved December 6, 2007 from
http://www.networkworld.com/news/2006/022706-mysql-buys-
netfrastructure.html

Niccolai, J. (2007, April 23). EnterpriseDB upgrade aimed at Oracle. NetworkWorld.
Retrieved December 6, 2007 from
http://www.networkworld.com/news/2007/042307-enterprisedb-upgrade-aimed-
at.html

Oppel, A. J. (2004). Databases demystified (pp. 17-19). Blacklick, OH: McGraw-Hill.

Pallatto, J. (2005, July 21). Oracle multicore licensing ignores market reality. eWeek.
Retrieved August 20, 2005, from
http://www.eweek.eom/article2/0,1759,1839671,00.asp

Poess, M. and Floyd, C. (2000) New TPC benchmarks for decision support and web
commerce. SIGMOD Record, 29. Retrieved July 27, 2003, from
http://www.acm.org/sigmod/record/issues/0012/standards.pdf

Raymond, E. (2001). The cathedral and the bazaar: Musings on Linux and open source
by an accidental revolutionary. Cambridge, MA: O'Reilly.

Register Research (2003, November 7). IBM and HP take phony benchmark war up
several notches. The Register. Retrieved August 18, 2006, from
http://www.theregister.co.Uk/2003/l l/07/ibm_and_hp_take_phony/

Scannell, E., Sullivan, T. (2000, October 23). New front opens in database war.
InfoWorld, 22, 12.

Serlin, 0. (1993). The history of the DebitCredit and the TPC. In J. Gray (Ed.), The
benchmark handbook for database and transaction processing systems, 2nd ed.
(pp. 21-40). San Mateo, CA: Morgan Kaufman Publishers.

Silberschatz, A., Korth, H. F., Sudarshan, S. (2002). Database system concepts (4th ed.)
New York, NY: McGraw-Hill.

Silwa, C. (2005). Financial services companies lead the charge to Linux. Computerworld,
39, 29, 34-35.

Songini, M. L. (2003, May 5). Oracle database users' interest in Linux grows.
Computerworld, 37,6.

http://www.networkworld.com/news/2006/022706-mysql-buys-
http://www.networkworld.com/news/2007/042307-enterprisedb-upgrade-aimed-
http://www.eweek.eom/article2/0
http://www.acm.org/sigmod/record/issues/0012/standards.pdf
http://www.theregister.co.Uk/2003/l

www.manaraa.com

97

Songini, M. L. (2004, July 12). MySQL, SAP plot upgrade of open-source database.
Computerworld, 55(28), 10.

Strandell, T. (2003, May 8). Open source database systems: Systems study, performance,
and scability. Unpublished master's thesis. University of Helsinki, Helsinki,
Finland. Retrieved July 31, 2005, from
http://www.cs.helsinki.fl/u/tpstrand/thesis/Toni_Strandell_Masters_Thesis.pdf

Spooner, J. G. (2005, July 1). Intel's dual-core servers prepare for their close-up. eWeek.
Retrieved August 20, 2005, from
http://www.eweek.com/article2/0,l 759,1833924,00.asp

Transaction Processing Performance Council (TPC) (1992). TPC-benchmark A: Standard
specification revision 1.1. In J. Gray (Ed.), The benchmark handbook for database
and transaction processing systems, 2nd ed. (pp. 41-85). San Mateo, CA: Morgan
Kaufman Publishers.

Witten, B., Landwehr, C, & Caloyannides, M. (2001). Does open source improve system
security? IEEE Software, 18(5), 57-61. Retrieved November 25, 2007, from
ABI/INFORM Global database. (Document ID: 81568046).

Yarger, R. J., Reese, G., & King, T. (1999). MySQL & mSQL. Sebastopol, CA: O'Reilly.

http://www.cs.helsinki.fl/u/tpstrand/thesis/Toni_Strandell_Masters_Thesis.pdf
http://www.eweek.com/article2/0,l

www.manaraa.com

APPENDICES

www.manaraa.com

99

Appendix A:

Generation Script for States

#!/usr/bin/perl -w

states.pl

@states = ("AK","AL","AR","AZ","CA", "CO", "CT","DE", "FL", "GA","HI","IA",

"ID", "IL", "IN", "KS", "KY", "LA", "MA", "MD", "ME", "MI", "MN", "MO", "MS",

"MT","NC","ND","NE","NH","NJ","NM","NV","NY","OH","OK","OR","PA",
"RI","SC","SD","TN","TX","UT","VA","VT","WA","WI","WV","WY");

open(STATES,">../raw/states.csv");
for ($i=0;$i<50;$i++) {

$foo = int(rand()*20) + 52;
printf STATES ("\"%s\",%.3f\n", $states[$i], $foo/8);

}

http://states.pl

www.manaraa.com

100

Appendix B:

Generation Script for Departments

#!/usr/bin/perl -w

departments.pl

@a = ("Home", "Office", "Outdoor", "Travel", "Discount", "All-Weather",
"Sporting", "Premium", "Medical", "Professional", "Home-Made");

@b = ("Furniture", "Clothing", "Soft Goods", "Men's Wear", "Women's
Wear",

"Goods", "Books", "Appliances");

$remaining = 60;
$key = 1;
open(DEPTS,">../raw/departments.csv");
while($remaining) {

$a_int = int(rand()*11);
$b_int = int(rand()*8);

$name = "$a[$a_int] $b[$b_int]";

if(defined($taken{$name})) {
next;

} else {
print DEPTS "$key,\"$name\"\n";
$taken($name} = 1;
$remaining--;
$key++;

}

http://departments.pl

www.manaraa.com

101

Appendix C:

Generation Script for Stores

#!/usr/bin/perl -w

stores.pl

@a = ("Mega", "Super", "Mini", "Shop");
@b = ("Mart", "Online", "Catalog");

@states = ("AK","AL","AR","AZ","CA","CO","CT","DE","FL","GA","HI","IA",

"ID","IL","IN","KS","KY","LA","MA","MD","ME","MI","MN","MO","MS",

"MT","NC","ND","NE","NH","NJ","NM","NV","NY","OH","OK","OR","PA",
"RI","SC","SD","TN","TX","UT","VA","VT","WA","WI","WV","WY");

$remaining = 250;
$key = 1;
open(STORES, ">../raw/stores.csv");
while($remaining) {

$a_int = int(rand()*4);
$b_int = int(rand()*3);

$st_int = int(rand()*50);

$d = rand();
if($d < 0.8) {

$discount = "0.00"
} elsif($d < 0.85) {

$discount = "0.05"
} elsif($d < 0.90) {

$discount = "0.10"
} elsif($d < 0.95) {

$discount = "0.15"
} else {

$discount = "0.20"
}

$name = "$a [$a__int] $b[$b_int]";
$taken{$name}++;

printf STORES ("$key,\"$name\ #%d\",$discount,%s\n",
$taken{$name}, $states[$st_int]);

$remaining--;
$key++;

http://stores.pl

www.manaraa.com

Appendix D:

Generation Script for Department Discounts

#!/usr/bin/perl -w

department_discounts.pl

$n_stores = 250;
$n_departments = 60;

open(DDISC, ">../raw/department_discounts.csv");
for($i=l; $i<=$n_stores; $i++) {

for($j=l; $j<=$n_departments; $j++) {
if (rand() < 0.2) {

$d = rand();
if($d < 0.5) {

$discount = "0.00";
} elsif($d < 0. 60) {

$discount = "0.05";
} elsif($d < 0.70) {

$discount = "0.10";
} elsif($d < 0.80) {

$discount = "0.20";
} elsif($d < 0.90) {

$discount = "0.30";
} else {

$discount = "0.4 0";
}

print DDISC "$i,$j,$discount\n";

}
}

}

http://department_discounts.pl

www.manaraa.com

103

Appendix E:

Generation Script for Shipping

#!/usr/bin/perl -w

shipping.pl

@states = ("AK","AL","AR","AZ","CA","CO","CT","DE","FL","GA","HI","IA",
"ID","IL","IN","KS","KY","LA","MA","MD","ME","MI","MN","MO","MS",
"MT","NC","ND","NE","NH","NJ","NM","NV","NY","OH","OK","OR","PA",
"RI","SC","SD","TN","TX","UT","VA","VT", "WA", "WI","WV","WY");

@weights = (5,10,20,50,100,150,200,250,300,400);
@costs = (6.0,8.0,15.0,30.0,55.0,75.0,90.0,115.0,130.0,150.0);

open(SHIPPING, ">../raw/shipping.csv");
for ($i=0;$i<50;$i++) {

for ($j=0;$j<50;$j++) {
$factor = 1.0 + (int (rand()*6) + 1) * 0.1;
for ($k=0;$k<10;$k++) {

$adjusted_cost = $factor * $costs[$k];
print SHIPPING "\"$states[$i]\",\"$states[$j]\","
. "$weights[$k],$adjusted_cost\n";

}
}

}

http://shipping.pl

www.manaraa.com

104

Appendix F:

Generation Script for Items

! /usr/bin/perl -w

items.pl

@adjective = ("Fast", "Slow", "Premium", "Cool", "Hot", "Stylish",
"Sophisticated", "Gentle", "Rough");

@noun = ("Sweater", "Coat", "Pants", "Shoes", "Socks", "Jacket",
"Suit",

"Sofa", "Chair");
@color = ("Red", "Blue", "Yellow", "Green", "Purple", "Orange", "Pink",

"Black", "White", "Gray");
@size = ("Small", "Medium", "Large", "Petite", "Big", "Tall", "S",
"XS",

"M", "L", "XL", "Junior");
@brand = ("Smyth", "Jonez", "Lightyear", "Ralf", "GKline", "Gooch");
@style = ("Modern", "Spring", "Fall", "Summer", "Winter", "Casual",

"Business");
@cloth = ("Felt", "Cotton", "Silk", "Nylon", "Rayon", "Leather",
"Corduroy",

"Chenille", "Elastic", "Spandex");

$words[0] = \@adjective; $n_words[0] = $#adjective;
$words[l] = \@noun; $n_words[l] = Sfnoun;
$words[2] = \@color; $n_words[2] = $#color;
$words[3] = \@size; $n words[3] = $#size;
$words[4] = \@brand
$words[5] = \@style
$words[6] = \@cloth

$n_words[4] = $#brand;
$n_words[5] = $#style;
$n~words[6] = $#cloth;

open(ITEMS, ">../raw/items.csv);
for($i=l; $i<=25000; $i++) {

$words = int(rand()*4) + 2;
$name = "";
for ($w=0;$w<$words;$w++) {

$wordtype = int(rand ()*7);
$word_int = int(rand()*$n_words[$wordtype]);
$name .= "$words[$wordtype][$word_int] ";

}
chop($name);
if(length($name) > 40) {

$name = substr($name, 0, 40);

$price = 10.0 + (rand()*6 + 1) * (rand()*100);
$weight = 1 + int(rand()*20);
$d = rand();
if($d < 0.2) {

$discount = 0.05 * (int($d * 5 * 4) + 1)
} else {

http://items.pl

www.manaraa.com

105

$discount = 0.00;
}
$department = int(rand()*60) + 1;

printf ITEMS
("$i,\"$name\",%.2f,$weight,$discount,$department\n",

$price);
}

www.manaraa.com

106

Appendix G:

Generation Script for Customer Accounts and Customer Addresses

#!/usr/bin/perl -w

customer.pl - generate customer_accounts and customer_addresses files
simultaneously

use Time::Local;

our(@male_names, @male_values, @female_names, @female_values,
@last_names,

@last_values, @city_names, @city_values, @states);

load_data();

open (CACCT, ">../raw/customer_accounts.csv");
open (CADDR, ">../raw/customer_addresses.csv");

for($i=l; $i<=1000000; $i++) {

$n_addrs = int(rand()*5) + 1;
$current_addr = int(rand()*$n_addrs) + 1;

$ca = "$i," . get_random_name() . "," . generate_phone() . ","
. $current_addr . "," . generate_balance() . ","
. generate_dates() . "\n";

print CACCT $ca;

for($j=l;$j<=$n_addrs;$j++) {
$caddr = "$i,$j," . generateaddress() . ","

. get_random_city() . "\n";
print CADDR $caddr;

}
}

sub get_random_name {

if(rand() < 0.52) {
$first_index = rand() * 90.024;
$first_name = select_name ($first__index, \@female_names,

\@female_values);
} else {

$first_index = rand() * 90.040;
$first_name = select_name($first_index, \@male_names,

\@male_values);
}
$last_index = rand() * 77.480;

$last_name = select_name($last_index, \@last_names,
\@last values);

http://customer.pl

www.manaraa.com

107

return "$first_name,$last_name";

} # get_random_name

sub select_name {

my($index, $a, $b) = @_;

@names = @{$a};
lvalues = @{$b};

for(my $i = 0; $i < $#names + 1; $i++) {

if ($index < $values[$i]) {
return $names[$i];

}
}
print "Failed to find name!!\n";

} # select_name

sub get random city {

$zip = sprintf "%05d", int (rand() * 100000);

$ index = rand();

for(my $i = 0; $i < $#city_names + 1; $i++) {

if($index < $city_values[$i]) {
return "$city_names[$i],$states[$i] , $zip";

}
}
print "Failed to find a city! How is that possible?!\n";

} # get_random_city

sub generate_phone {

return sprintf("%03d-%03d-%04d", int (rand() * 700) + 200,
int (rand()*1000), int(rand()* 10000));

} # generate_phone

sub generate_address {

$house = int (rand() * 10000) + 1;
$street = int (rand() * 150) + 1;
if($street % 10 == 1) {

$street .= "st";
} elsif ($street % 10 == 2) {

$street .= "nd";

www.manaraa.com

elsif ($street % 10 == 3) {
$street .= "rd";

else {
$street .= "th";

$d = int(rand() * 20)+l;
if($d > 18) {

$dir
elsif($d >

$dir
elsif($d >

$dir
elsif($d >

$dir
elsif($d >

$dir
elsif($d >

$dir
elsif($d >

$dir
elsif($d >

$dir
else {

$dir

= "Ea
16) {
= "We
14) {
= "So
12) {
= "No
ID {
= "NE
10) {
= "NW
9) {
= "SE
8) {
= "SW

_ II II .

$s = int (rand() * 4) ;
$str = "Road" if $s == 0;
$str = "Street" if $s == 1;
$str = "Avenue" if $s == 2;
$str = "Boulevard" if $s == 3;

return "$house dirstreet $str";

) # generate_address

sub generate balance {

if(rand() < 0.95) {
return "0.00";

} else {
return sprintf("%.2f", rand()*2

}

} # generate_balance

sub generate_dates {

create date = 1/1/2003 + random in 5
activity date = 7/1/2007 + random in

$y5start = timelocal(0,0,0,1,0,103);
$y5end = timelocal(0,0,0,1,0,108);
$m6start = timelocal(0,0,0,1,6,107);

www.manaraa.com

$cd = int(rand()*($y5end - $y5start)) + $y5start;

if($cd > $m6start) {
$diff = ($y5end - $cd);
$ad = int(rand()*$diff) + $cd;

} else {
$diff = ($y5end - $m6start);
$ad = int(rand()*$diff) + $m6start;

}

return "" . my_format($cd) . '","' . my_format($ad) . "" ;

} # generate_dates

sub my format() {

$d = $_[0];

($sec,$min,$hr,$day,$mon,$yr) = localtime($d);

return sprintf("%02d/%02d/%4d %02d:%02d:%02d", $mon+l, $day,
$yr+1900,

$hr, $min, $sec);

} # my_format

sub load_data {

my $ i = 0 ;

open FILE, "<male.txt";
while (<FILE>) {

chop;
($male_names[$i], $male_values[$i]) = split /,/;
$i++;

}
close FILE;

$i = 0;
open FILE, "<female.txt" ;
while (<FILE>) {

chop;
($female_names[$i], $female_values[$i]) = split 1,1;
$i++;

}
close FILE;

$i = 0;
open FILE, "<lastnames.txt";
while (<FILE>) {

chop;
($last_names[$i], $last_values[$i]) = split 1,1;
$i++;

}
close FILE;

$i = 0;

www.manaraa.com

110

open FILE, "<cities.txt";
while (<FILE>) {

chop;
($city_values[$i], $states[$i], $city_names[$i])

split 1,1;
$i++;

}
close FILE;

} # load data

www.manaraa.com

I l l

Appendix H:

Generation Script for Item Ratings

! / u s r / b i n / p e r l -w

item_ratings.pl

use Time::Local;

$n_items = 25000; # from of the items.csv file
$n_cacct = 1000000; # from the customer_accounts file

open(CACCT,"<../raw/customer_accounts.csv");
while(<CACCT>) {

Rvalues = split /,/;
$id = $values[0];
$values[6] =~ /"(.*)"/;
$cd[$id] = $1;

}
close(CACCT);

open(IRATING,">../raw/item_ratings.csv") ;

for($i=l;$i<=$n_items;$i++) {
$d = rand();

we double the below ratings and then they'll be halfed back when we
verify
the rating date > create date. This means we need to read in the
create
dates first.

if($d < 0.11) {
$n ratings = 0;

} elsif($d~< 0.89) {
$n_ratings = int(rand()*10*2) + 1;

} elsif($d < 0.99) {
$n_ratings = int(rand()*100*2) + 1;

} else {
$n_ratings = int (rand()*1000*2) + 1;

}

$j = 1;
undef %cr;
while($j<=$n_ratings) {

$ca_id = int(rand()*$n_cacct) + 1;

skip if we did this customer already
next if($cr($ca_id});

this one counts
$j++;
$cr{$ca id}=l;

http://item_ratings.pl

www.manaraa.com

rating date = 1/1/2003 + random in 5 yr
$y5start = timelocal(0,0,0,1,0,103);
$y5end = timelocal(0,0,0,1,0,108);
$rd = int(rand()*($y5end - $y5start)) + $y5start;

reverse the create date
($mdy,$hms) = split / /, $cd[$ca_id];
($mon,$day,$yr) = split /\//,$mdy;
($hr,$min,$sec) = split /:/,$hms;
$this_cd = timelocal(0+$sec, 0+$min, 0+$hr, 0+$day,

0+$mon-l,$yr-1900);

skip if create date after rating date
next if $rd <= $this_cd;

$rating = int(rand()*5) + 1;
($sec,$min,$hr,$day,$mon,$yr) = localtime($rd);
$mon++; $yr+=1900;
$rdstring = "\"$mon/$day/$yr $hr:$min:$sec\"";

print IRATING "$i,$ca id,$rating,$rdstring\n";

www.manaraa.com

113

Appendix I:

Generation Script for Store Inventories

#!/usr/bin/perl -w

store_inventories.pl

$n_items = 25000; # from of the items.csv file
$n_stores = 250;

open(ITEMS, "<../raw/items.csv");
while(<ITEMS>) {

Rvalues = split /,/;
$id = $values[0];
$wholesale_price[$id] = $values[2];

}
close(ITEMS);

open(SINV, ">../raw/store_inventory.csv");

for ($i=l;$i<=$n_stores;$i + +) {
for($j=l;$j<=$n_items;$j++) {

40% chance skip, else 1-6 qty.
if(rand() < 0.4) {

next;
} else {

$qty = int(rand()*6) + 1;
}

retail = wholesale plus 5-40% markup
$markup = 0.05 * (int(rand()*8) + 1);
$retail_price = $wholesale_price[$j] * (1 + $markup);

printf SINV ("$i , $ j , $qty, % . 2f \n" , $retail_price) ;
}

}

http://store_inventories.pl

www.manaraa.com

114

Appendix J:

Generation Script for Volume Discounts

#!/usr/bin/perl -w

volume_discounts.pl

open(VOLD,">../raw/volume_discounts.csv");
print VOLD "100,0.00\n";
$value = 100;
for($i=l;$i<=10;$i++) {

$value = 2 * $value;
printf VOLD ("%d,%.2f\n", $value, 0.01 * $i);

}

http://volume_discounts.pl

www.manaraa.com

115

Appendix K:

Generation Script for Club Members

#!/usr/bin/perl -w

club.pl

open(CLUBl,">../raw/clubl.csv");

for ($i=l;$i<=1000000;$i + +) {
15% of accounts are club members
if(rand() < 0.15) {

$d = rand();
Three levels of membership with different discounts
if($d <0.75) {

$disc = 0.05;
} elsif($d < 0.95) {

$disc = 0.10;
} else {

$disc = 0.15;
}
print CLUB1 "$i,$disc\n";

}
}

http://club.pl

www.manaraa.com

Appendix L:

Generation Script for Transactions, Transaction Items, and Club Members Tables

#!/usr/bin/perl -w

tran.pl - generates transactions, transaction_items, and club_membe

use Time::Local;

our (%shipwts, %shipcosts, @vold_prices, @vold_discounts,
@club_discount,

@club_total_qty, @club_total_spent, @club_last_purchase_date,
@create_date, @cust_state, @item_price, @item_weight,

@store_state,
%tax_rates);

$n_trans = 30000000; # actual number will be half this by date check

$n_items = 25000; # from of the items.csv file

our $n_cacct = 1000000; # from the customer_accounts file

$y5start = timelocal(0,0,0,1,0,103);
$y5end = timelocal(0,0, 0,1,0,108);

&load_shipping;
&1oad_volume_discounts;
Sloadtax;
&load_club_discounts;
&load_customer_data;
&load stores;
&load_items; •.

open (TRANS, ">../raw/transactions.csv");

open (TITEMS, ">../raw/transaction_items.csv");

for ($tid=l;$tid<=$n_trans;$tid++) {

$cid = int (rand()*$n_cacct) + 1;

$to_state = $customer_state[$cid];

tran date = 1/1/2003 + random in 5 yr
$td = int(rand()*($y5end - $y5start)) + $y5start;
skip if tran date is before customer create date
next if($td < $create_date[$cid]);

$store_id = int(rand()*250) + 1;
$from_state = $store_state[$store_id];

transaction items: 1-3 (75%) or 1-19 (25%)
if(rand() < 0.75) {

http://tran.pl

www.manaraa.com

117

$n_trans_items = int(rand()*3) + 1 ;
} else {

$n_trans_items = int (rand()*19) + 1;
}

$subtotal = $total_wt = 0;
for($seqno=l; $seqno<=$n_trans_items; $seqno++) {

$item_id = int(rand()*$n_iterns) + 1;
$price = $item_price[$item_id];
$markup = 0.80 + 0.01 * int(rand()*60);
$price = money_round($price * $markup);

qty = 1 (90%) or 1-4 (10%)
if (rand() < 0.9) {

$qty = 1;
} else {

$qty = int(rand()*4) + 1;
}
$extended_price = $price * $qty;
$weight = $item weight[$item id];
if (rand () < 0 . 5~T {

$discount = 0.0;
} else {

$discount = 0.01 * int(rand()*40);

$discount));
$discounted_price = money_round($price * (1.0

$total_wt += $weight * $qty;
$subtotal += $discounted_price;

print TITEMS "$tid,$seqno,$item_id,$price,$qty,"

"$extended_price,$discount,$discounted_price\n";

$club_total_qty[$cid] += $qty;
}
$voldisc = compute_volume_discount($subtotal);
$club_disc = $club_discount[$cid];

$disc_subtotal = money_round($subtotal * (1.0-$voldisc-
$club_disc));

$shipping = compute_shipping($from_state, $to_state,
$total_wt);

$tax = $tax_rates{$to_state};
$total = money_round($disc_subtotal +

$shipping + 0.01*$tax*$disc_subtotal);

$club_total_spent[$cid] += $total;
if($td > $club last purchase date[$cid]) {

$club_last_purchase_date[$cid] = $td;
}
$date = pretty_date($td);
print TRANS

"$tid, $cid, $store_id,\"$date\",$subtotal,$total_wt,"
. "$club_disc,$voldisc,$shipping,$tax, $total\n";

} # loop over trans

www.manaraa.com

118

close(TRANS);
close(TITEMS);

open(CLUB2, ">../raw/club2.csv");
for($cid=l; $cid<=$n_cacct;$cid++) {

member date = 1/1/2003 + random in 5 yr
$md = int(rand()*($y5end - $y5start)) + $y5start;

skip if tran date is before customer create date
if($md < $create_date[$cid]) {

$md = $create_date[$cid];
}
$member_date = pretty_date($md);
if($club_last_purchase_date[$cid]) {

$clpd = pretty_date($club_last_purchase_date[$cid])
} else {

$clpd = "";

if($club_discount[$cid] != 0) {
print CLUB2

"$cid,$club_total_qty[$cid],$club_total_spent[$cid],"
. "\"$member_date\",\"$clpd\","
. "$club discount[$cid]\n";

close(CLUB2);

sub load_shipping {
open (SHIP, ". ./raw/shipping.csv");
while(<SHIP>) {

chomp;
($from,$to,$wt,$cost) = split /,/;
$key = "$from,$to";
$ k e y =~ /"(.*)","(•*)"/;
$key = "$1,$2";
$shipwts{$key} .= $wt . ",";
$shipcosts{$key} .= $cost . ",";

}

close(SHIP);

sub compute_shipping {
($from,$to,$this_wt) = @_;
$key = "$from,$to";
@wts = split /,/,$shipwts{$key};
@costs = split /,/,$shipcosts{$key};

for($k=0;$k<=$#wts;$k++) {
$this_cost = $costs[$k];
last if($this_wt <= $wts[$k]);

}
return $this cost;

sub load volume discounts {

www.manaraa.com

119

open(VOLD, "../raw/volume_discounts.csv");
$k=0;
while(<VOLD>) {

chomp;
($vold_prices[$k],$vold_discounts[$k]) = split 1,1;
$k++;

}
close(VOLD);

sub compute_volume_discount {
$total_price = shift;

for($k=0;$k<=$#vold_prices;$k++) {
$this_discount = $vold_discounts[$k];
last if($total price < $vold prices[$k]);

}
return $this discount;

sub load_tax {
open (TAX, ". ./raw/states.csv") ;
while(<TAX>) {

chomp;
($state,$tax) = split /,/;
$state =~ /" (. *) " / ;
$tax_rates{$l} = $tax;

}
close(TAX);

sub load club discounts {
for($i=l;$i<=$n_cacct;$i++) {

$club_discount[$i] = 0;
$club_total_qty[$i] = 0;
$club_total_spent[$i] = 0;
$club_last_purchase_date[$i] = 0;

}
open(CLUB1, "<../raw/clubl.csv");
while (<CLUB1>) {

chomp;
($cid, $disc) = split 1,1;
last if($cid > $n_cacct);
$club_discount[$cid] = $disc;

}
close(CLUB1);

}

sub load_customer_data {
my(@addr);

open(CACCT,"<../raw/customer_accounts.csv");
$k = 0;
while(<CACCT>) {

chomp;
Rvalues = split /,/;

www.manaraa.com

120

$cid = $values[0];

last if ($cid > $n_cacct);

$addr[$cid] = $values[4];

reverse the create date

$values[6] =~ /" (.*)"/;
($mdy,$hms) = split / /, $1;
($mon,$day,$yr) = split /\//,$mdy;
($hr,$min,$sec) = split /:/,$hms;
$create date[$cid] = timelocal(0+$sec, 0+$min, 0+$hr, 0+$day,

0+$mon-l,$yr-1900);
}
close(CACCT)

open(CADDR,"<../raw/customer_addresses.csv") ;
while(<CADDR>) {

Rvalues = split /,/;
$cid = $values[0];
$seq no = $values[l];
$state = $values[4];
last if($cid > $n_cacct);
if ($addr [$cid] == $seq__no) {

$customer_state[$cid] = $state;
}

}
close(CADDR);

sub load_stores {
open (STORES, "<. ./raw/stores.csv") ;
while(<STORES>) {

chomp;
@values = split /,/;
$sid = $values[0];
$store_state[$sid] = $values[3];

}
close(STORES);

}

sub load_items {
open (ITEMS, "<. ./raw/items.csv");
while(<ITEMS>) {

chomp;
Rvalues = split 1,1;
$item_id = $values[0];
$item_price[$item_id] = $values[2];
$item weight[$item id] = $values[3^

}
close(ITEMS);

sub pretty_date {
$date = shift;
($sec,$min,$hr,$day,$mon,$yr) = localtime($date)
$mon++; $yr+=1900;

www.manaraa.com

121

return sprintf("%02d/%02d/%4d %02d:%02d:%02d", $mon, $day, $yr,
$hr, $min, $sec);

}

sub money_round {
Svalue = shift;

return int ($value*100+0.5)/100.0;
}

www.manaraa.com

122

Appendix M:

Benchmark Script for Batch Load

#!/usr/bin/perl -w

loadb.pl - Batch load of benchmark raw data files into a database

$dbtype = "DB2";
#$dbtype = "Firebird";
#$dbtype = "Sybase";
#$dbtype = "Postgresql";
#$dbtype = "Oracle";
#$dbtype = "MySQL";

use Time::HiRes qw(gettimeofday tv_interval); # High resolution
timing
use Switch; # For switch/case statements
use DBI; # General database interface

our($dbh, $dsn);

switch($dbtype) {
case "Sybase" {

use DBD::Sybase; # Sybase specific interface
$dsn = "DBI:Sybase:server=VADER";
$db_user="bench";
$db_pass="benchpw";
$endsql = "";

}
case "Postgresql" {

use DBD::Pg; # Postgresql specific
interface

$dsn = "DBI:Pg:";
$db_user="bench";
$db_pass = "bench" ;
$endsql = ";";

}
case "Oracle" {

fuse DBD::Oracle; # Oracle specific interface
$dsn = "DBI:Oracle:";
$db_user="bench" ;
$db_pass="bench" ;
$endsql = "";

}
case "MySQL" {

fuse DBD::mysql; # MySQL specific interface
$dsn = "DBI:mysql:database=bench;host=localhost;port=330 6";
$db_user="bench_user";
$db_pass="benchl" ;
$endsql = "; ";

}
case "Firebird" {

use DBD: : InterBase; # Firebird specific interface

http://loadb.pl

www.manaraa.com

123

$dsn =
"DBI:InterBase: db=/opt/firebird/bench.fdb;ib_dialect=3";

$db_user="bench" ;
$db_pass="bench";
$endsql = "";

}
case "DB2" {

use DBD::DB2;
use DBD::DB2::Constants;
$dsn = "dbi:DB2:bench";
$db_user = "";
$db_user = "";
$endsql = "";

}
default { die "DBD $dbtype not found."; }

}

our(@table, @placeholders, @fields, @date_fields);
Stable definitions;

$n children = 14;

Empty out all of the tables.

$trun_dbh = DBI->connect($dsn, $db_user, $db_pass);

for($i=0; $i<$n_children; $i++) {
$sql = "truncate table $table[$i]$endsql";
if($dbtype eq "Firebird") {

$sql = "delete from $table[$i]";
}
if($dbtype eq "DB2") {

$sql = "alter table $table[$i] activate not logged "
. "initially with empty table";

}
print($sql . "\n");
$trun_dbh->do($sql);

}
$trun dbh->disconnect;

$start_time = [gettimeofday]; # Start timer

Run each child process in its own thread, for parallelism.

for($i=0; $i<$n_children; $i++) {

$pid = fork();
child_proc($i) if(!$pid);

}

$children_done = 0;
$child = 0;
while ($child != -1) {

$child = wait(); # Returns -1 when no more children waiting.
if($child != -1) {

www.manaraa.com

124

$children__done++;
}

}

$elapsed_time = tv_interval($start_time); # End timer

print "$children_done finished $elapsed__time sec.\n";

End of script.

sub child_proc {
$child_no = shift;
print "Running child number $child_no\n";

Login and create database handler

$dbh = DBI->connect($dsn, $db_user, $db_pass);

if($dbtype eq "Oracle") {
$dbh->do("alter session set " .

"nls_date_format='yyyy-mm-dd hh24:mi:ss'");

load_table($table[$child_no], $placeholders[$child_no],
$fields[$child_no]7 $date_fields[$child_no]);

exit 0;

sub load_table() {
$table = shift;
$placeholder = shift;
$fields = shift;
$date_cols = shift;

my $sth;

if($dbtype eq "Sybase") {
if($table eq "customer_accounts" or Stable eq "stores" or

$table eq "items" or $table eq "transactions" or
$table eq "departments") {

$presql = "set identity_insert $table on";
$sth = $dbh->prepare($presql);
$sth->execute;

$sql = "insert into $table ($fields) values
($placeholder)$endsql";

$sth = $dbh->prepare($sql);

$file = " ./raw/$table.csv\n";
open RAWFILE, "<$file" or die "Can't open file: $file";
while (<RAWFILE>) {

chomp; # remove newline
s/"//g; # remove quotes

www.manaraa.com

125

$values = fix_dates($_, $date_cols);
@value_array = split /,/, $values;
if($dbtype eq "Postgresql" or $dbtype eq "Firebird"

or $dbtype eq "DB2") {
@value_array = replace_undef(@value_array);

}
$sth->execute(@value_array);

}
$sth->finish;

}

Convert date to MySQL format.

sub mysql_convert_date {

$old_date = shift;
return "null" if $old_date eq
return $old_date;

}

Convert date to Oracle format.

sub oracle_convert_date {

$old_date = shift;
return "null" if $old_date eq '""•;
return $old_date;

We used alter session nls_date_format at the beginning. Otherwise we
would need to recode to use:
to__date (' $old_date ', ' yyyy-mm-dd hh24:mi:ss')
}

Convert date to Postgresql format.

sub pg convert date {

$old_date = shift;
return "null" if $old_date eq ' ';
return $old_date;

}

Convert date to DB2 format.

sub db2_convert_date {

$old__date = shift;
return "null" if $old_date eq
return $old date;

}

Convert date to Sybase format.

sub sybase convert date {

$old_date = shift;
return "null" if $old_date eq
return $old date;

www.manaraa.com

1

}

Convert date to Firebird format.

sub firebird_convert_date {

$old_date = shift;
return "null" if $old_date eq
return $old_date;

}

For postgresql: replace "null" with undef in an array.

sub replace_undef {

@foo = @_;
for($i=0; $i<= $#foo; $i++) {

if($foo[$i] eq "null") {
$foo[$i] = undef;

}
}
return @foo;

}

Identify which columns need date conversion and fix them.

sub fix_dates {

my @cols = split /,/, shift;
my @nums = split /,/, shift;
switch($dbtype) {

case "Sybase" {
foreach $key (@nums) {

$cols[$key] = sybase_convert_date($cols[$key]);
}

}
case "Postgresql" {

foreach $key (@nums) {
$cols[$key] = pg_convert_date($cols[$key]);

}
}
case "DB2" {

foreach $key (@nums) {
$cols[$key] = db2_convert_date($cols[$key]);

}
}
case "Oracle" {

foreach $key (@nums) {
$cols[$key] = oracle_convert_date($cols[$key]);

}
}
case "MySQL" {

foreach $key (@nums) {
$cols[$key] = mysql_convert_date($cols[$key]);

1
}
case "Firebird" {

www.manaraa.com

foreach $key (@nums) {
$cols[$key] =

firebird_convert_date($cols[$key]);
}

}
default { die "DBD $dbtype"; }

}
return(join ",", @cols);

}

sub table_definitions {

$table[0] = "club_members";
$placeholders[0] = "?, ?, ?, ?, ?, ?";
$fields[0] = "customer_id, total_quantity, total_spent, "

. "member_since, last_purchase_date, discount";
$date_fields[0] = "3,4";

$table[l] = "customer_accounts";
$placeholders[l] = "?, ?, ?, ?, ?, ?, ?, ?";
$fields[l] = "customer_id, first_name, last_name, phone, "

. "current_address, balance, creation_date, activity^date"
$date_fields[l] = "6,7";

$table[2] = "customer_addresses";
$placeholders[2] = "?, ?, ?, ?, ?, ?";
$fields[2] = "customer_id, sequence_number, street_address, city

. " s t a t e , z i p " ;
$da te_ f i e lds [2] = "";

$table[3] = "department_discounts";
$placeholders[3] = "?, ?, ?";
$fields[3] = "store_id, department_id, sale_discount";
$date_fields [3] =• """;

$table[4] = "departments";
$placeholders[4] = "?, ?";
$fields[4] - "department_id, name";
$date_fields[4] = "";

$table[5] = "item__ratings" ;
$placeholders[5] = "?, ?, ?, ?";
$fields[5] = "item_id, customer_id, rating, date_updated";
$date_fields[5] = "3";

$table[6] = "items";
$placeholders[6] = "?, ?, ?, ?, ?, ?";
$fields[6] = "item_id, name, wholesale_price, weight, "

. "item_discount, department_id";
$date_fields[6] = "";

$table[7] = "shipping";
$placeholders[7] = "?, ?, ?, ?";
$fields[7] = "from state, to state, weight, shipping cost";

www.manaraa.com

128

$date_fields[7] = "";

$table[8] = "states";
$placeholders[8] = "?, ?";
$fields[8] = "state, tax_rate";
$date_fields[8] = "";

$table[9] = "store_inventories";
$placeholders[9] = "?, ?, ?, ?";
$fields[9] = "store_id, item_id, quantity, retail__price" ;
$date_fields[9] = "";

$table[10] = "stores";
$placeholders[10] = "?, ?, ?, ?";
$fields[10] = "store_id, store_name, store_discount,

ships_from_state";
$date_fields[10] = "";

$table[ll] = "transaction_items";
$placeholders[ll] = "?, ?~ ?, ?, ?, ?, ?, ?";
$fields[ll] = "transaction id, sequence number, item id, price, "

. "quantity, extended_price, discount, discounted_price";
$date_fields[11] = "";

$table[12] = "transactions";
$placeholders[12] = "?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?";
$fields[12] = "transaction_id, customer_id, store_id, tran_date,

ii

. "subtotal, total weight, club discount, volume discount,
IT

. "shipping_cost, taxes, total";
$date_fields[12] = "3";

$table[13] = "volume_discounts";
$placeholders[13] = ""?, ?";
$fields[13] = "total_purchase, discount"; -.
$date fields[13] = "";

}

www.manaraa.com

Appendix N:

Benchmark Script for Transaction Processing

#!/usr/bin/perl -w

tranb.pl - run transactions as part of the benchmark case

$dbtype = "DB2";
#$dbtype = "Sybase";
#$dbtype = "Postgresql";
#$dbtype = "Oracle";
#$dbtype = "MySQL";

use Time::HiRes qw(gettimeofday tv_interval); # High resolution
timing
use Time::Local; # reverse of localtime
use Switch; # For switch/case statements
use DBI; # General database interface
fuse DBD::InterBase; # Firebird specific interface
fuse DBD::Sybase; # Sybase specific interface
fuse DBD::Pg; # Postgresql specific interface
use DBD::DB2; # DB2 specific interface
use DBD::DB2::Constants; # more for DB2
fuse DBD::Oracle; # Oracle specific interface
fuse DBD::mysql; # MySQL specific interface

$ 1 = 1 ;

our($dbh, $dsn);
our($endsql, $ca_seq, $stores_seq, $items_seq, $tran_seq, $dept_s
our($tablelockmode);

switch($dbtype) {
case "Firebird" {

$dsn =
"DBI:InterBase:db=/opt/firebird/bench.fdb;ib_dialect=3";

$db_user="bench";
$db_pass="bench";
$endsql = "";
$ca_seq = "gen_id(customer_accounts_seq,1),";
$stores_seq = "gen_id(stores^seq,1),";
$items_seq = "gen_id(items_seq,1),";
$tran_seq = "gen_id(transactions_seq,1),";
$dept_seq = "gen_id(departments_seq,1),";
$tablelockmode = "with lock";

}
case "DB2" {

$dsn = "dbi:DB2:bench";
$db_user="";
$db_pass="";
$endsql = "";
$ca_seq = $stores_seq = $items_seq =
$tran seq = $dept seq= "default, ";

http://tranb.pl

www.manaraa.com

130

$tablelockmode = "IN EXCLUSIVE MODE";
}
case "Sybase" {

$dsn = "DBI:Sybase:server=VADER";
$db_user="bench";
$db_pass="benchpw";
$endsql = "";
$ca_seq = $stores_seq = $items__seq =
$tran_seq = $dept_seq= "";
$tablelockmode = "IN EXCLUSIVE MODE";

}
case "Postqresql" {

$dsn = "DBI:Pg:";
$db_user="bench" ;
$db_pass="bench";
$endsql = "";
$ca_seq = "nextval(\"customer_accounts_seq\"),";
$stores__seq = "nextval (\ "stores_seq\")," ;
$items__seq = "nextval (\"items_seq\") , " ;
$tran_seq = "nextval(\"transactions_seq\"),";
$dept_seq = "nextval(\"departments_seq\"),";
$tablelockmode = "IN EXCLUSIVE MODE";

}
case "Oracle" {

$dsn = "DBI:Oracle:";
$db_user="bench" ;
$db_pass="bench";
$endsql = "";
$ca seq = "customer__accounts_seq. nextval, " ;
$stores_seq = "stores_seq.nextval,";
$items_seq = "items_seq.nextval,";
$tran_seq = "transactions_seq.nextval,";
$dept_seq = "departments_seq.nextval,";
$tablelockmode = "IN EXCLUSIVE MODE";

}
case "MySQL" {

$dsn = "DBIrmysql:database=bench;host=localhost;port=3306";
$db_user="bench__user " ;
$db_pass="benchl";
$endsql = ";";
$ca_seq = $stores_seq = $items_seq =
$tran_seq = $dept_seq= "null,";
$tablelockmode = "WRITE";

}
default { die "DBD $dbtype not found."; }

our($n_children, $n_transactions_per_child);
$n_children = 20; # 20 processes
$n_transactions_per_child = 500;
$n_transactions_per_child = 500;

our(@male_names, @male_values, @female_names, @female_values,
@last__names,

@last_values, @city_names, @city_values, @states);
our($INITIAL CUSTOMERS, $INITIAL ITEMS,

www.manaraa.com

131

$INITIAL_STORES, $INITIAL_DEPARTMENTS);

load_data(); # Get sample names from text files, set constants

$start_time = [gettimeofday]; # Start timer

Run each child process in its own thread, for parallelism.

for($i=0; $i<$n_children; $i++) {

$pid = fork();
child_proc($i) if(!$pid);

}

$children_done = 0;
$child = 0;
while ($child != -1) {

$child = wait(); # Returns -1 when no more children waiting.
if($child != -1) {

$children_done++;
}

}

$elapsed_time = tv_interval($start_time); # End timer

print "$children_done finished $elapsed_time sec.\n";

End of script.

sub child_proc {
$child_no = shift;
print "Running child number $child_no\n";

Login and create database handler

$dbh = DBI->connect($dsn, $db_user, $db_pass,

{PrintError => 1, RaiseError => 1, AutoCommit => 0"
or die "Database connection failed: $DBI::errstr";

if($dbtype eq "Sybase") {
$dbh->do("set arithabort numeric_truncation off");

}
if($dbtype eq "Oracle") {

Tell Oracle to use our date format
$dbh->do("alter session set " .

"nls date format='mm/dd/yyyy hh24 :mi : ss ' ") ;
$dbh->commit();

run_transactions($child_no);

exit 0;

Run a series of transactions, selected randomly.

www.manaraa.com

132

sub run_transactions {
$child_no = shift;

for($tran_no=0; $tran_no<$n_transactions_per_child; $tran_no++)

print "Child $child_no tran $tran_no ";
$x = rand () ;
if ($x < 0.70) {

very common transaction, 60% chance
very_common_transaction();

} elsif ($x < 0.96) {
common transaction, 30% chance
common_transaction();

} else {
rare transaction, 10% chance
rare_transaction();

}
}

} # run transactions

sub fix__one_date {
$date = shift;
switch($dbtype) {

case "Sybase" {
Sybase needs no conversion,
return $date;

}
case "MySQL" {

MySQL needs no conversion,
return $date;

}
case "DB2" {

• . # DB2 needs to convert dates
return db2_convert_date($date);

}
case "Oracle" {

Oracle needs no conversion,
return $date;

}
case "Postgresql" {

Postgresql needs no conversion,
return $date;

}
case "Firebird" {

Firebird needs no conversion,
return $date;

}
default { die "DBD $dbtype"; }

}
} # fix one date

sub very_common_transaction {

www.manaraa.com

133

$key = int (rand() *6) ;
$tran_start_time = [gettimeofday]; # Start timer

switch ($key) {
case 0 {

create_customer();
}
case 1 {

update_customer_balance() ;
}
case 2 {

customer_rates_an_item();
}
case 3 {

customer_purchases_item () ;
}
case 4 {

adjust_inventory();
}
case 5 {

adjust__item_for_all_stores () ;
}

}
$tran elapsed time = tv interval($tran start time); # End timer
print "very_common $key $tran_elapsed_time\n";

sub common^transaction {

$key = int (rand () *6) ;
$tran_start_time = [gettimeofday]; # Start timer

switch($key) {
case 0 {

update_phone (•) ;
}
case 1 {

update_address();
}
case 2 {

add_new address();
}
case 3 {

change current address();
}
case 4 {

customer_joins_club() ;
}
case 5 {

create new item();

$tran_elapsed_time = tv_interval($tran_start_time); # End timer
print "common $key $tran_elapsed_time\n";

www.manaraa.com

134

sub rare_transaction {

$key = int (rand() *7) ;
$tran_start_time = [gettimeofday]; # Start timer

switch($key) {
case 0 {

create_new_store();
}
case 1 {

close^store();
}
case 2 {

update_store_discount();
}
case 3 {

adjust_department_discount() ;
}
case 4 {

update volume discount();
}
case 5 {

update shipping();
}
case 6 {

update_item();
1

}
$tran_elapsed_time = tv_interval($tran_start_time); # End timer
print "rare $key $tran_elapsed_time\n";

sub create_customer {

($sec,$min,$hr,undef,undef,undef) = localtime(time);
Put timestamp in 1/1/08
$now = timelocal($sec,$min, $hr,1, 0, 2008) ;
Convert to general format
$now = '"' . my_format($now) . •"';
Convert to DB-specific format
$now = fix one date($now);

start tran - drops out of eval block on error
eval {

insert customer account record
$sql = "INSERT INTO customer_accounts VALUES($ca_seq "

. get_random_name() . "," . generate_phone()

. ",l70.00,$now,$now)";
$sql = fix_quotes($sql);
$sth = $dbh->prepare($sql);
$sth->execute ();

www.manaraa.com

1

get the insert id from the auto_increment
switch($dbtype) {

case "MySQL" {
$customer_id = $dbh->last__insert__id (undef, undef,
"customer_accounts","customer_id");

}
case "Oracle" {

$customer_id =
get_oracle_sequence("customer_accounts_seq") ;

}
case "DB2" {

$customer_id = get_db2_last_insert_id();
}
case "Postgresql" {

$customer_id =
get_pg_sequence("customer accounts_seq");

}
case "Sybase" {

$customer_id = $dbh->last_insert_id(undef,undef,
"custoraer_accounts","customer_id");

}
case "Firebird" {

$customer_id =
get_firebird_sequence("customer_accounts_seq")

}
default { die "Unknown dbtype: $dbtype"; }

}

insert customer address record
$sql = "INSERT INTO customeraddresses VALUES ($customer__id

1,"
. generate_address() . "," . get_random_city() . ") "

$sql = fix_quotes($sql);
$sth = $dbh->prepare($sql);
$sth->execute();

commit tran
$dbh->commit();

};
if($@) {

warn "Database error: $DBI::errstr\n";

$dbh->rollback(); # dies if rollback fails
}

} # create customer

sub update customer balance {

select a customer account randomly
$id = int (randO* ($INITIAL_CUSTOMERS-10)) ;

start tran - drops out of eval block on error
eval {

find a valid id, in case we picked a missing record
$sql = "SELECT MIN(customer_id) AS \"THIS_ID\" "

. "FROM customer accounts "

www.manaraa.com

136

100.0

. "WHERE customer_id > $id";
$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref;
%row = %$rowref;
$customer_id = $row{THIS_ID);

$sth->finish () ;

subtract 100 from customer balance
$sql = "UPDATE customer_accounts SET balance = balance

. "WHERE customer_id = $customer_id";
$dbh->do($sql);

commit tran
$dbh->commit();

};
if($@) {

warn "Database error: $DBI::errstr\n";

$dbh->rollback(); # dies if rollback fails
}

} # update_customer_balance

sub customer_rates_an_item {

select a customer account and item randomly
$customer_id = int(rand()*($INITIAL_CUSTOMERS-10));
$item_id = int (rand()*($INITIAL_ITEMS-10));

current timestamp
($sec,$min,$hr,undef,undef,undef) = localtime(time);
Put timestamp in 1/1/08
$now = timelocal($sec,$min,$hr,1,0,2008);
Convert to general format
$now = '"' . my_format($now) . '"';
Convert to DB-specific format
$now = fix_one_date($now) ;

new rating
$rating = int(rand()*5)+1;

start tran - drops out of eval block on error
eval {

find a valid customer id, in case we picked a missing
record

$sql = "SELECT MIN(customer_id) AS \"THIS_ID\" "
. "FROM customer_accounts "
. "WHERE customer__id > $customer_id" ;

$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow hashref;
%row = %$rowref;
$customer_id = $row{THIS^ID};
$sth->finish();

www.manaraa.com

137

lock";

find a valid item id, in case we picked a missing record
$sql = "SELECT MIN(item_id) AS \"THIS_ID\" FROM items "

. "WHERE item_id > $item_id";
$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref;
%row = %$rowref;
$item_id = $row{THIS_ID};
$sth->finish();

lock the item_ratings table
if($dbtype eq "Sybase") {

$dbh->do("BEGIN TRAN");
}
if($dbtype ne "Firebird") {

$dbh->do("LOCK TABLE item^ratings $tablelockmode");

see if this item's already been rating by this user
if($dbtype eq "Firebird") {

Firebird's locking is nonstandard
$sql = "SELECT * FROM item_ratings WHERE item_id = "
. "$item_id and customer_id = $customer_id with

$sth = $dbh->prepare($sql);
$sth->execute();
$sth->finish();

}
$sql = "SELECT count(*) as \"CNT\" FROM item_ratings "

. "WHERE item_id = $item_id and "

. "customer_id = $customer_id";

$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref;
%row = %$rowref;
$count = $row{CNT};
$sth->finish () ;

if($count == 0) {
insert new rating
$sql = "INSERT INTO item_ratings VALUES($item_id, "

. "$customer_id, $rating, $now)";
$sql = fix_quotes($sql);
$dbh->do($sql);

} else {
update with new rating
$sql = "UPDATE item_ratings set rating = $rating, "

. "date_updated = $now "

. "WHERE item_id = $item_id "

. "AND customer_id = $customer__id" ;
$sql = f ix__quotes ($sql) ;
$dbh->do($sql) ;

commit tran

www.manaraa.com

if($dbtype eq "Sybase") {
$dbh->do("COMMIT TRAN");

}
if($dbtype eq "MySQL") {

$dbh->do("UNLOCK TABLES");
}
if($dbtype eq "Firebird") {

$dbh->do("COMMIT");
}
$dbh->commit();

};
if($@) {

warn "Database error: $DBI::errstr\n";
if($dbtype eq "Sybase") {

$dbh->do("ROLLBACK TRAN");
}
if($dbtype eq "MySQL") {

$dbh->do("UNLOCK TABLES");
}
if($dbtype eq "Firebird") {

$dbh->do("ROLLBACK");
}
$dbh->rollback(); # dies if rollback fails

}

} # customer rates_an_item

sub customer_purchases_item {

select a customer account and item randomly
$customer_id = int(rand()*($INITIAL_CUSTOMERS-10));

current timestamp (for hour, minute, second)
($sec,$min,$hr,undef,undef,undef) = localtime(time);
-set date part to 1/1/08
$now •= timelocal($sec,$min,$hr,1,0,2008);
Convert to general format
$now = '"' . my_format($now) . '"';
Convert to DB-specific format

• $now = fix one_date($now);

find a valid customer id, in case we picked a missing
and then get customer's tax rate, ship-to state,
and club member discount
$sql = "SELECT c.customer_id AS \"CUSTOMER_ID\", "

. "ca.state AS \"STATE\", "

. "COALESCE(cm.discount, 0) as \"DISCOUNT\", "

. "s.tax__rate as \"TAX\" "

. "FROM customer accounts c "

. "INNER JOIN customer_addresses ca "

. "ON c.customer_id = ca.customer_id "

. "INNER JOIN states s ON ca.state = s. state "

. "LEFT OUTER JOIN clubjnembers cm "

. "ON cm.customer_id = c.customer_id "

. "WHERE c.current_address = ca.sequence_number "

. "AND c.customer id = "

www.manaraa.com

139

. "(SELECT MIN(customer_id) FROM

. "WHERE customer_id > $customer
$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref;

%row = %$rowref;
$customer_id = $row{CUSTOMER_ID};
$to_state = $row{STATE};
$club_discount = $row{DISCOUNT};
$tax = $row{TAX};
$sth->finish();
$dbh->commit(); # avoid locks

find the max item id
$sql = "SELECT max(item_id) as \"ITEM_ID\" FROM items";
$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref;
%row = %$rowref;
$max_item_id = $row{ITEM_ID};
$sth->finish();
$max_item_id = 25000 if($dbtype eq "Sybase");

find the max store id
$sql = "SELECT max(store_id) as \"STORE_ID\" FROM stores";
$ s t h = $ d b h - > p r e p a r e ($ s q l) ;
$sth->execute();
$rowref = $sth->fetchrow_hashref;
%row = %$rowref;
$max__store_id = $row{ STORE_ID} ;
$sth->finish ();
$max_store_id = 250 if($dbtype eq "Sybase");

pick a random store, get location
$store_id = int (rand () * ($max__store_id-10)) ;
$sql = "SELECT store_id AS \"THIS_ID\", "

. "ships_from_state AS \"FROM_STATE\" "

. "FROM stores WHERE store_id = "

. "(SELECT MIN(store_id) FROM stores "
"WHERE store_id >= $store_id)";

$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref;
%row = %$rowref;
$store_id = $row{THIS_ID};
$from_state = $row{FROM_STATE};
$sth->finish();
$dbh->commit(); # avoid locks

select a random number of items similar to the gen script
if(rand() < 0.75) { # 1-3 (75%) or 1-19 (25%)

$n_trans_items = int(rand()*3) + 1;
} else {

$n trans_items = int(rand()*19) + 1;
}

customer_accounts
id)";

www.manaraa.com

loop over the items - get item from store inventory, and its
data

decrement store inventory
$total_weight = 0;
$subtotal = 0;
$total_price = 0;
for($i=0; $i<$n_trans_items; $i++) {

$my_item_id = int(rand()*($max_item_id-100));
$sql = "

SELECT s.store_discount AS \"STORE_DISCOUNT\",
s.ships_from_state AS \"FROM_STATE\",
si.retail_price AS \"PRICE\",
COALESCE(dd.sale_discount, 0.0) AS \"SALE_DISCOUNT\",
i.item_id AS \"ITEM_ID\",
i.item_discount AS \"ITEMJ3ISCOUNT\",
i.weight AS \"WEIGHT\",
si.quantity as \"STORE_QUANTITY\"

FROM stores s
INNER JOIN store_inventories si ON si.store_id = s.store_id
INNER JOIN items i ON si.item_id = i.item_id
LEFT OUTER JOIN department_discounts dd

ON i.department_id = dd.department_id AND s.store__id = dd.store_id
WHERE s.store_id = $store_id AND i.item_id = (SELECT MIN(item_id)

FROM store_inventories
WHERE store_id = $store_id AND quantity > 0 AND item_id >

$my item^id)
i t .

$sth = $dbh->prepare($sql) ;
$sth->execute();
if(!($rowref = $sth->fetchrow_hashref)) {

no row returned... abort this transaction
return;

}
%row = %$rowref;
$my__item__id = $row{ITEM_ID};
$from_state = $row{FROM_STATE};
$price = $row{PRICE};
$store_discount = $row{STORE_DISCOUNT};
$sale_discount = $row{SALE_DISCOUNT};
$item_discount = $row{ITEM_DISCOUNT};
$total_weight += $row{WEIGHT};
$store_quantity = $row{STORE_QUANTITY};

load arrays for use later
$item_id[$i] = $my__item__id;
$item_price[$i] = $price;
$discount[$i] = $store_discount + $sale_discount +

$item_discount;

apply discounts to come to final price, add to running

$price = $price * (1 - $store_discount -
$item^discount - $sale_discount);

$price = sprintf("%.2f", $price);
$discounted price[$i] = $price;
$subtotal += $price;

total

www.manaraa.com

$sth->finish();

$dbh->do("LOCK TABLE store_inventories WRITE");
if($store_quantity < 5) {

automatically restock so the benchmark testing
doesn't run out of inventory
$sql = "UPDATE store_inventories "
. "SET quantity = quantity + 9 "
. "WHERE store_id = $store_id and "
. "item_id = $my_item_id";

} else {
decrement store inventory quantity by 1 for this

item
$sql = "UPDATE store_inventories "
. "SET quantity = quantity - 1 "
. "WHERE store_id = $store_id and "
. "item_id = $my_item_id";

}
$dbh->do($sql);

$dbh->do("UNLOCK TABLES");
$dbh->commit(); # avoid locks

}

lookup volume discount
$sql = "SELECT COALESCE(MAX(discount),0.00) AS

\"VOLUME_DISCOUNT\" "
. "FROM volume_discounts WHERE total_purchase <

$total_price";
$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow hashref;
%row = %$rowref;
$volume_discount = $row{VOLUME_DISCOUNT};
$sth->finish();
$dbh->commit(); # avoid locks

apply volume and club discounts to subtotal
$total_price = $subtotal * (1 - $volume_discount -

$club_discount);
$total_price = sprintf("%.2f", $total_price);

lookup shipping
$sql = "SELECT COALESCE(MIN(shipping_cost), 160.00) AS

\"SHIPPING\" "
. "FROM shipping "
. "WHERE from_state = '" . $from_state . "' AND to_state

I II

. $to_state . "' AND weight > $total_weight";
$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref;
%row = %$rowref;
$shipping = $row{SHIPPING};
$sth->finish();
$dbh->commit(); # avoid locks

www.manaraa.com

apply shipping and tax to subtotal
$total_price += $shipping;
$total~price = sprintf("%.2f", $total_price * (1 + $tax/100.0));

start tran - drops out of eval block on error
eval {

insert the transaction
$sql = "INSERT INTO transactions VALUES($tran_seq "

. "$customer_id, "

. "$store_id, $now, $subtotal, $total_weight, "

. "$club_discount, $volume_discount, "

. "$shipping, $tax, $total_price)";
$sql = fix_quotes($sql);
$dbh->do("$sql");

get the insert id from the auto_increment
if($dbtype eq "MySQL" or $dbtype eq "Sybase") {

$transaction_id = $dbh->last insert id(undef,undef,
"transactions","transaction_id");

} elsif($dbtype eq "Oracle") {
$transaction_id =

get_oracle_sequence("transactions_seq");
} elsif($dbtype eq "DB2") {

$transaction_id = get_db2_last_insert_id();
} elsif($dbtype eq "Firebird") {

$transaction_id =
get_firebird_sequence("transactions_seq");

} elsif($dbtype eq "Postgresqi") {
$transaction_id =

get_pg_sequence("transactions^seq");
} else {

die "Unknown dbtype: $dbtype";

loop over items
for($i=0; $i<$n_trans_items; $i++) {

$sequence_no = $i + 1 ;
insert the transaction items
$sql = "INSERT INTO transaction_items VALUES("

. "$transaction_id, $sequence_no, "

. "$item_id[$i], $item_price[$i], 1, "

. "$item_price[$i], "

. "$discount[$i], $discounted_jprice[$i])",
$dbh->do("$sql");

update club membership if applicable
$sql = "UPDATE club_members SET total_quantity = "

. "total_quantity + $n_trans_iterns, "

. "total_spent = total_spent + $total_price,

. "last_purchase_date = $now "

. "WHERE customer_id = $customer_id";
$sql = fix quotes($sql);

www.manaraa.com

143

$dbh->do("$sql");

$dbh->commit();
};
if($@) {

warn "Database error: $DBI::errstr\n";

$dbh->rollback(); # dies if rollback fails
}

} # customer_purchases_item

sub adjust_inventory {

find the max item id
$sql = "SELECT max(item__id) as \"ITEM_ID\" FROM items";
$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow hashref;
%row = %$rowref;
$max_item_id = $row{ITEM_ID};
$sth->finish ();
$dbh->commit();
$max_item_id = 25000 if($dbtype eq "Sybase");

$item_id = int(rand()*($max_item_id-10));
find a valid item id, in case we picked a missing record
$sql = "SELECT item_id as \"ITEM_ID\", "

. "wholesale_price as \"WHOLESALE_PRICE\" "

. "FROM items "

. "WHERE item_id = (SELECT MIN (item__id) FROM items "

. "WHERE item_id > $item_id)";
$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref ;

%row = %$rowref;
$item_id = $row{ITEM^ID};
$wholesale_price = $row{WHOLESALE_PRICE};
$sth->finish ();
$dbh->commit();

find the max store id
$sql = "SELECT max(store_id) as \"STORE_ID\" FROM stores";
$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref;
%row = %$rowref;
$max_store__id = $row{ STORE_ID} ;
$sth->finish ();
$dbh->commit();
$max_store_id = 250 if($dbtype eq "Sybase");

$store_id = int(rand()*($max_store_id-5));
find a valid store id, in case we picked a missing record
$sql = "SELECT MIN (store_id) AS \"THIS__ID\" FROM stores "

. "WHERE store_id > $store_id";
$sth = $dbh->prepare($sql);

www.manaraa.com

$sth->execute();
$rowref = $sth->fetchrow_hashref;

%row = %$rowref;
$store_id = $row{THIS_ID};
$sth->finish();
$dbh->commit();

eval {
$sql = "SELECT count(*) AS \"CNT\" FROM store_inventories

. "WHERE store_id = $store_id AND "

. "item_id = $item_id";
$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref;
%row = %$rowref;
$sth->finish();
if($row{CNT} == 0) {

insert new inventory row
$quantity = int (rand()* 6) + 1 ;

$price = sprintf ("% .2f", $wholesale__price *
(1 + 0.05 * (int(rand()*8) + 1)));

$sql = "INSERT INTO store_inventories VALUES("
. "$store_id, $item_id, $quantity, $price)";
$dbh->do(~$sql) ;

} else {
delete inventory row
$sql = "DELETE FROM store_inventories WHERE "
. "store_id = $store_id AND item_id = $item_id";
$dbh->do($sql);

}
$dbh->commit();

};
if($@) {

warn "Database error: $DBI::errstr\n";
$dbh->rollback(); # dies if rollback fails

}

} # adjust_inventory

sub adjust_item__for_all_stores {

find the max item id
$sql = "SELECT max(item_id) as \"ITEM_ID\" FROM items";
$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref;
%row = %$rowref;
$max_item_id = $row{ITEM_ID);
$sth->finish();
$dbh->commit();
$max item id = 25000 if($dbtype eq "Sybase");

Pick an item at random
$item_id = int(rand()*($max_item_id-10));
$sql = "SELECT count(*) AS \"CNT\" FROM items WHERE item_id =

Sitem id";

www.manaraa.com

145

$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref ;

%row = %$rowref;
$sth->finish();
$dbh->commit();

if($row{CNT} == 0) {
add an item if it does not exist
$dbh->commit(); # We're done with thie transaction.
create_new_item(); # Runs its own transaction.
return;

}
$dbh->commit(); # prevent locks

We need the store ids
undef @these__stores;
$sql = "SELECT store_id as \"STORE_ID\" FROM stores'
$sth = $dbh->prepare($sql);
$sth->execute();
while($rowref = $sth->fetchrow_hashref) {

%row = %$rowref;
push(@these_stores, $row{STORE_ID});

}
$sth->finish();
$dbh->commit(); # avoid locks

to keep the db from exhausting supplies, we sometimes
add quantity instead of remove quantity.
if(rand() < 0.3) {

set the store inventories to zero quantity
$sql = "UPDATE

. "WHERE
} else {

add 20 items
$sql = "UPDATE

store inventories SET quantity
store id = ? AND item id = ?";

to each store that carries it
store_inventories ."

SET quantity = quantity +-20 "
WHERE store id = ? AND item id = ?";

0

$sth = $dbh->prepare($sql)

eval
$dbh->do("LOCK TABLE store_inventories WRITE");
foreach $store_id (@these_stores) {

Loop over all stores. Where stores do not
exist in store_inventories, nothing will
happen and that's okay.

$sth->execute($store_id, $item_id);

}
$dbh->do("UNLOCK TABLES");
$dbh->commit();

};
if ($@)

warn "Database error: $DBI::errstr\n";
$dbh->rollback(); # dies if rollback fails

www.manaraa.com

146

} # adjust_item_for_all_stores

sub update_phone {

select a customer account randomly
$id = int (randO* ($INITIAL_CUSTOMERS-10)) ;

current timestamp
($sec,$min,$hr,undef,undef,undef) = localtime(time);
Put timestamp in 1/1/08
$now = timelocal($sec,$min, $hr,1,0,2008) ;
Convert to general format
$now = '"' . my_format($now) . '"';
Convert to DB-specific format
$now = fix_one_date($now) ;

start tran - drops out of eval block on error
eval {

find a valid id, in case we picked a missing record
$sql = "SELECT MIN(customer_id) AS \"THIS_ID\" "

. "FROM customer_accounts "

. "WHERE customer_id > $id";
$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref;
%row = %$rowref;
$customer__id = $row{ THIS_ID} ;
$sth->finish();

$new_phone = generate_phone();

update the phone number
$sql = "UPDATE customer_accounts SET phone = $new_phone, "

. "activity_date = $now "

. "WHERE customerid = $customer_id";
$sql = fix_quotes($sql);
$dbh->do($¥ql);

commit tran
$dbh->commit();

};
if($@) {

warn "Database error: $DBI::errstr\n";
$dbh->rollback(); # dies if rollback fails

) # update_phone

sub update_address {

select a customer account randomly
$id = int(rand()*($INITIAL CUSTOMERS-10)

current timestamp

www.manaraa.com

147

($sec,$min,$hr,undef,undef,undef) = localtime(time);
Put timestamp in 1/1/08
$now = timelocal($sec,$min,$hr,1,0,2008) ;
Convert to general format
$now = '"' . my_format($now) . '"';
Convert to DB-specific format
$now = fix_one_date($now);

start tran - drops out of eval block on error
eval {

find a valid id, in case we picked a missing record
$sql = "SELECT MIN(customer_id) AS \"THIS_ID\" "

. "FROM customer_accounts "

. "WHERE customer_id > $id";
$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref;
%row = %$rowref;
$customer_id = $row{ THIS__ID);
$sth->finish();

find a valid sequence number, in case we picked
a missing record
$sql = "SELECT MIN(sequence_number) AS \"SEQ_NO\" "

. "FROM customer addresses "

. "WHERE customer_id = $customer_id";
$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref;
%row = %$rowref;
$seq_no = $row{SEQ_NO};

$new_address = generate_address();
$city_state_zip = get_random_city();
($new_city, $new_state, $new_zip) = split /,/,

$city_state_zip;
$sth->finish ();

update the activity date
$sql = "UPDATE customer_accounts SET activity_date = $now

. "WHERE customer_id = $customer_id";
$sql = fix_quotes($sql);
$dbh->do($sql);

update the address
$sql = "UPDATE customer_addresses "

"SET street_address = $new_address, "
"city = $new_city, state = $new_state, "
"zip = $new zip "
"WHERE customer_id = $customer_id "
"AND sequence_number = $seq_no";

$sql = fix_quotes($sql);
$dbh->do($sql);

commit tran
$dbh->commit();

www.manaraa.com

if($@) {
warn "Database error: $DBI::errstr\n";

$dbh->rollback(); # dies if rollback fails
}

} # update_address

sub add_new_address {

select a customer account randomly
$id = int(rand()*($INITIAL_CUSTOMERS-10));

current timestamp
($sec,$min,$hr,undef,undef,undef) = localtime(time);
Put timestamp in 1/1/08
$now = timelocal($sec,$min,$hr,1,0,2008);
Convert to general format
$now = '"' . my_format($now) . '"';
Convert to DB-specific format
$now = fix_one_date($now);

start tran - drops out of eval block on error
eval {

find a valid id, in case we picked a missing record
$sql = "SELECT MIN(customer_id) AS \"THIS_ID\" "

. "FROM customer accounts "

. "WHERE customer^id > $id";
$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref;
%row = %$rowref;
$customer_id = $row{THIS_ID};
$sth->finish ();

find a valid id, in case we picked a missing record
$sql = "SELECT MAX(sequence_number) AS \"MAX_SEQ_NO\" "

. "FROM customer^addresses "

. "WHERE customer_id = $customer_id";
$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref;
%row = %$rowref;
$sequence_number = $row{MAXJSEQ_N0} + 1;

$new address = generate address ();
$city state_zip = get random city();
($new_city, $new_state, $new_zip) = split /,/,

$city_state_zip;
$sth->finish();

update the activity date
$sql = "UPDATE customer_accounts SET activity_date = $n

. "WHERE customer_id = $customer_id";
$sql = fix_quotes($sql);
$dbh->do($sql);

www.manaraa.com

insert the new address
$sql = "INSERT INTO customer_addresses VALUES($customer

. "$sequence_number, $new_address, $new__city, "

. "$new_state, $new_zip)";
$sql = fix_quotes($sql);
$dbh->do($sql);

commit tran
$dbh->commit();

};
if($@) {

warn "Database error: $DBI::errstr\n";
$dbh->rollback(); # dies if rollback fails

add new address

sub change_current_address {

select a customer account randomly
$id = int (randO* ($INITIAL_CUSTOMERS-10)) ;

current timestamp
($sec,$min,$hr,undef,undef,undef) = localtime(time);
Put timestamp in 1/1/08
$now = timelocal($sec,$min,$hr,1,0,2008);
Convert to general format
$now = '"' . my_format($now) . '"';
Convert to DB-specific format
$now = fix_one_date($now);

start tran - drops out of eval block on error
eval {

find a valid id, in case we picked a missing record
$sql = "SELECT MIN(customer_id) AS \"THIS_ID\" "

. "FROM customer_accounts "

. "WHERE customer_id > $id";
$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref;
%row = %$rowref;
$customer_id = $row{THIS_ID};
$sth->finish();

find a valid sequence number, in case we picked
a missing record
$sql = "SELECT MAX(sequence_number) AS \"SEQ_NO\" "

. "FROM customer_addresses "

. "WHERE customer id = $customer id";
$sth = $dbh->prepare ($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref;
%row = %$rowref;
$new_seq_no = int(rand()*$row{SEQ_NO}) + 1 ;
$sth->finish();

www.manaraa.com

find a valid sequence number, in case we picked
a missing record
$sql = "SELECT MIN(sequence_number) AS \"SEQ_NO\" "

. "FROM customer_addresses "

. "WHERE customer^id = $customer_id AND "

. "sequence__number >= $new_seq_no";
$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref;
%row = %$rowref;
$new_address_number = $row{SEQ_NO};
$sth->finish();

update the activity date and new current address
$sql = "UPDATE customer_accounts SET activity_date = $

. "current^address = $new_address_number "

. "WHERE customer_id = $customer_id";
$sql = fix_quotes($sql);
$dbh->do($sql);

commit tran
$dbh->commit();

};
if($@) {

warn "Database error: $DBI::errstr\n";
$dbh->rollback(); # dies if rollback fails

}

change_current_address

sub customer_joins_club•{

select a customer account randomly
$id = int(rand()*($INITIAL_CUSTOMERS-10));

current timestamp
($sec,$min,$hr,undef,undef,undef) = localtime (time);
Put timestamp in 1/1/08
$now = timelocal($sec,$min,$hr,1,0,2008);
Convert to general format
$now = '"' . my_format($now) . '"';
Convert to DB-specific format
$now = fix_one_date($now);

start tran - drops out of eval block on error
eval {

find a valid id, in case we picked a missing record
$sql = "SELECT MIN(customer_id) AS \"THIS_ID\" "

. "FROM customer_accounts "

. "WHERE customer^id > $id";
$sth = $dbh->prepare($sql);
$sth->execute();

www.manaraa.com

$rowref = $sth->fetchrow_hashref;
%row = %$rowref;
$customer_id = $row{THIS_ID};
$sth->finish();

$sql = "SELECT COALESCE(SUM(discount),0) AS \"DISCOUNT\" '
. "FROM club_members "
. "WHERE customer__id = $customer_id";

$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref;
%row = %$rowref;
$sth->finish();

if($row{DISCOUNT} == 0) {
insert new row to club members table
$sql = "INSERT INTO club_members "

. "VALUES($customer_id, 0, 0.0, "

. "$now, null, 0.05)";
} elsif($row{DISCOUNT} > 0.14) {

delete this membership
$sql = "DELETE FROM club_members "

. "WHERE customer_id = $customer_id";
} else {

increase this membership level
$sql = "UPDATE club_members "

. "SET discount = discount + 0.05 "

. "WHERE customer_id = $customer_id";
}
$sql = fix_quotes($sql);
$dbh->do($sql);

update the activity date
$sql = "UPDATE customer_accounts SET activity_date = $now

. "WHERE customer_id = $customer_id";
$sql = fix_quotes($sql); •.
$dbh->do($sql);

commit tran
$dbh->commit();

};
if($@) {

warn "Database error: $DBI::errstr\n";

$dbh->rollback(); # dies if rollback fails
}

} # customer_joins_club

sub create_new_itera {

generate item characteristics
@adjective = ("Fast", "Slow", "Premium", "Cool", "Hot",

"Stylish",
"Sophisticated", "Gentle", "Rough");

@noun = ("Sweater", "Coat", "Pants", "Shoes", "Socks", "Jacket",
"Suit", "Sofa", "Chair");

www.manaraa.com

152

@color = ("Red", "Blue", "Yellow", "Green", "Purple", "Orange",
"Pink", "Black", "White", "Gray");

@size = ("Small", "Medium", "Large", "Petite", "Big", "Tall",
" S ",

"XS", "M", "L", "XL", "Junior");
Sbrand = ("Smyth", "Jonez", "Lightyear", "Ralf", "GKline",

"Gooch");
@style = ("Modern", "Spring", "Fall", "Summer", "Winter",

"Casual",
"Business");

@cloth = ("Felt", "Cotton", "Silk", "Nylon", "Rayon", "Leather",
"Corduroy", "Chenille", "Elastic", "Spandex");

$words[0] = \@adjective; $n_words[0] = $#adjective;
$words[l] = \@noun; $n_words[l] = $#noun;
$words[2] = \@color; $n_words[2] = $#color;
$words[3] = \@size; $n_words[3] = $#size;
$words[4] = \@brand; $n_words[4] = $#brand;
$words[5] = \@style; $n__words[5] = $#style;
$words[6] = \@cloth; $n_words[6] = $#cloth;

$words = int(rand()*4) + 2;
$name = "";
for ($w=0;$w<$words;$w++) {

$wordtype = int(rand()*7);
$word_int = int(rand()*$n_words[$wordtype]);
$name .= "$words[$wordtype][$word_int] ";

}
chop($name);
if(length($name) > 40) {

$name = substr($name, 0, 40);
}
$name = "\"$name\"";

$price = sprintf("%.2f", 10.0 + (rand()*6 + 1) * (rand()*100)) ;
$weight = 1 + int(rand()*20);
$d = rand () ;
if($d < 0.2) {

$discount = 0.05 * (int($d * 5 * 4) + 1);
} else {

$discount = 0.00;
}
$department = int(rand()*$INITIAL_DEPARTMENTS) + 1;

eval {
$sql = "INSERT INTO items VALUES ($items__seq $name, $price,

ti

. "$weight, $discount, $department)";
$sql = fix_quotes($sql);
$dbh->do($sql);

get the insert id from the auto_increment
if($dbtype eq "MySQL" or $dbtype eq "Sybase") {

$item_id = $dbh->last_insert_id(undef, undef,
"items","item_id");

} elsif($dbtype eq "Oracle") {
$item id =

www.manaraa.com

get_oracle_sequence("items_seq");
} elsif($dbtype eq "DB2") {

$item_id = get_db2_last_insert_id();
} elsif($dbtype eq "Postgresql") {

$item_id =
get_pg_sequence("items_seq");

} elsif($dbtype eq "Firebird") {
$item_id =

get_firebird_sequence("items_seq");
} else {

die "Unknown dbtype: $dbtype";
}
$dbh->commit(); # avoid locks

};
if($@) {

warn "Database error: $DBI::errstr\n";
$dbh->rollback(); # dies if rollback fails
return;

20% chance to add item to store inventories
if(rand() > 0.2) {

return;

start tran
eval {

We need the store ids
undef(@these_stores);
$sql = "SELECT store_id as \"STORE_ID\" FROM stores
$sth = $dbh->prepare($sql);
$sth->execute();
while($rowref = $sth->fetchrow_hashref) {

%row = %$rowref;
push(@these_stores, $row{STORE_ID});

}
$dbh->commit(); # avoid locks

foreach $store_id (@these_stores) {

40% chance this store gets no inventory
next if(rand () < 0.4);

otherwise 1-6 quantity
$qty = int (rand() *6) + 1;

retail = wholesale plus 5-40% markup
$markup = 0.05 * (int(rand()* 8) + 1);

$retail_price = sprintf ("%.2f",
$price * (1 + $markup));

$sql = "INSERT INTO store_inventories VALUES(
. "$store_id, $item_id, "
. "$qty, $retail_price)";

$dbh->do($sql);
$dbh->commit(); # avoid locks

www.manaraa.com

154

}
don't forget to empty out this array, we will
be re-using it later
undef(@these_stores);

commit tran
$dbh->commit();

};
if($@) {

warn "Database error: $DBI::errstr\n";

$dbh->rollback(); # dies if rollback fails
}

} # create new item

sub update_item {

Select random item
$item_id = int(rand()*($INITIAL_ITEMS-10));

find a valid item id, in case we picked a missing record
$sql = "SELECT item^id as \"ITEM_ID\", "

. "wholesale_price as \"WHOLESALE_PRICE\" "

. "FROM items "

. "WHERE item_id = (SELECT MIN(item_id) FROM items "

. "WHERE item_id > $item_id)";
$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow hashref;

%row = %$rowref;
$item_id = $row{ITEM_ID};
$old_price = $row{WHOLESALE_PRICE);
$sth->finish();
$dbh->commit() ;

Randomly generate new price and discount
$new_price = sprintf("%.2f", 10.0 + (rand()*6 + 1) *

(rand()*100));
$d = rand();
if ($d < 0.2) {

$discount = 0.05 * (int($d * 5 * 4) + 1);
} else {

$discount = 0.00;
}

Compute markup
$markup = sprintf("%.2f", $new_price - $old_price) ;

start tran - drops out of eval block on error
eval {

Update item price and discount
$sql = "UPDATE items SET wholesale_price = $new_price,

. "item_discount = $discount WHERE item_id =
$item id";

$dbh->do($sql);

www.manaraa.com

155

$item id";

Apply markup to store inventories for that item
$sql = "UPDATE store_inventories SET retail_price

. "retail_price + ($markup) WHERE item_id =

$dbh->do($sql);

commit tran
$dbh->commit();

if($@) {
warn "Database error: $DBI::errstr\n";
$dbh->rollback(); # dies if rollback fails

update_item

sub create_new_store {

generate data for new store
@a = ("Mega", "Super", "Mini", "Shop");
@b = ("Mart", "Online", "Catalog");
@fifty_states = ("AK","AL","AR","AZ","CA","CO","CT","DE","FL",

"GA","HI","IA","ID","IL","IN","KS","KY","LA","MA","MD",
"ME","MI","MN","MO","MS","MT","NC","ND","NE","NH","NJ",
"NM","NV","NY","OH","OK","OR","PA","RI","SC","SD","TN",
" T X», "UT","VA", "VT","WA","WI","WV", "WY");

$a_int = int(rand()*4);
$b_int = int(rand()*3);
$st int = int(rand()*50);

$d = rand () ;
if($d < 0.8) {

$discount = "0.00"
} elsif($d < 0.85) {

$discount = "0.05"
} elsif($d < 0.90) {

$discount = "0.10"
} elsif($d < 0.95) {

$discount = "0.15"
) else {

$discount = "0.20"

$name = "$a[$a_int] $b[$b_int]";
$from state = "\"$fifty states[$st_int]\"";

start tran - drops out of eval block on error
eval {

Get store number
$sql = "SELECT MAX (store__id) AS \"STORE_ID\" FROM stores",
$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref;
%row = %$rowref;
$name = sprintf("\"$name #%d\"", $row{STORE ID} + 1);

www.manaraa.com

$ s t h - > f i m s h () ;

insert into stores table
$sql = "INSERT INTO stores VALUES($stores_seq $name,

. "$discount, $from_state)";
$sql = fix_quotes($sql);
$dbh->do($sql);

Get the created store id
if($dbtype eq "MySQL" or $dbtype eq "Sybase") {

$store_id = $dbh->last_insert_id(undef,undef,
"stores","store_id");

elsif($dbtype eq "Oracle") {
$store_id =

get_oracle_sequence("stores_seq");
elsif($dbtype eq "DB2") {

$store_id = get_db2_last_insert_id();
elsif($dbtype eq "Postgresql") {

$store__id =
get_pg_sequence("stores_seq");

elsif($dbtype eq "Firebird") {
$store_id =

get firebird sequence("stores seq");
else {

die "Unknown dbtype: $dbtype";

$dbh->commit(); # avoid locks

generate data for department discounts
for each of the 60 departments
for($i=l; $i<=$INITIAL_DEPARTMENTS; $i++) {

20% chance this store has this dept
next if(rand() > 0.2) ;

$d = rand () ; • .
if ($d < 0.5) { ' •

$discount = "0.00";
elsif($d < 0.60) {

$discount = "0.05";
elsif($d < 0.70) {

$discount = "0.10";
elsif($d < 0.80) {

$discount = "0.20";
elsif($d < 0.90) {

$discount = "0.30";
else {

$discount = "0.40";

$sql = "INSERT INTO department^discounts "
. "VALUES($store_id, $i, $discount)",

$dbh->do($sql);

} # for each department
$dbh->commit; # avoid locks

www.manaraa.com

157

generate data for new store inventories
undef %price_hash;
$sql = "SELECT item_id as \"ITEM_ID\", "

. "wholesale_price as \"WHOLESALE_PRICE\" FROM
items";

$sth = $dbh->prepare($sql);
$sth->execute();
while($rowref = $sth->fetchrow_hashref) {

%row = %$rowref;
$item_id = $row{ITEM_ID};
$price_hash{$item_id} = $row{WHOLESALE_PRICE};

}
$dbh->commit; # avoid locks

foreach $item_id (keys %price_hash) {
99% chance skip, else 1-6 qty.
next if(rand() < 0.99);
$qty = int (rand() *6) + 1;

retail = wholesale plus 5-40% markup
$markup = 0.05 * (int (rand()*8) + 1);
$retail_price = sprintf ("%.2f",

$price_hash{$item_id} * (1 + $markup));

insert this inventory
$sql = "INSERT INTO store_inventories "

. "VALUES($store_id, $item_id, $qty, "

. "$retail_price)";
$dbh->do($sql);
$dbh->commit; # avoid locks

} # for each item, going into store inventory

clear this hash when done
undef %price_hash;

commit tran
$dbh->commit();

if($@) {
warn "Database error: $DBI::errstr\n";
$dbh->rollback(); # dies if rollback fails

} # create new store

sub close store {

start tran - drops out of eval block on error
eval {

find the max store id
$sql = "SELECT max(store_id) as \ "STORE__ID\" FROM stores";
$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow hashref;

www.manaraa.com

158

%row = %$rowref;
$max_id = $row{STORE_ID};
$sth->finish ();
$max_id = 250 if($dbtype eq "Sybase");

$store_id = int(rand()*($max_id-5));
check to see if store_id exists
$sql = "SELECT count(*) AS \"CNT\" FROM stores "

. "WHERE store_id = $store_id";
$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref;
%row = %$rowref;
$sth->finish();

if($row{CNT} == 0) {

No store found-- create new store instead.
create_new_store();

} else {

Delete this store and records related to it.
$sql = "DELETE FROM store_inventories "

. "WHERE store_id = $store_id";
$dbh->do("$sql");

$sql = "DELETE FROM department_discounts "
. "WHERE store__id = $store_id";

$dbh->do("$sql");

$sql = "DELETE FROM stores "
. "WHERE store^id = $store_id";

$dbh->do("$sql");

}

commit tran
$dbh->commit();

};
if($@) {

warn "Database error: $DBI::errstr\n";
$dbh->rollback(); # dies if rollback fails

} # close_store

sub update_store_discount {

$store_id = int (rand()*($INITIAL_STORES-5));

start tran - drops out of eval block on error

eval {
find a valid store id, in case we picked a missing record
$sql = "SELECT store_id as \"STORE_ID\", "

. "store discount as V'STORE DISCOUNTV FROM stores "

www.manaraa.com

159

. "WHERE store_id = (SELECT MIN(store_id) FROM stores
II

. "WHERE store_id > $store_id)";
$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref;
%row = %$rowref;
$store_id = $row{STORE_ID};
$old_discount = $row{STORE_DISCOUNT};
$sth->finish ();

if ($old_discount < 0.2) {
$new_discount = sprintf ("% . 2f", $old__discount +

0.05);
$factor = 1.05;

} else {
$new_discount = 0.0;
$factor = 0.95;

}
$dbh->commit(); # avoid locks

update the store's discount
$sql = "UPDATE stores SET store_discount = $new_discount "

. "WHERE store_id = $store_id";
$dbh->do($sql);
$dbh->commit(); # avoid locks

update the retail prices in the store's inventory
$sql = "UPDATE store_inventories "

. "SET retail_price = retail_price * $factor "

. "WHERE store_id = $store_id";
$dbh->do($sql);

commit tran
$dbh->commit();

if($@) {
warn "Database error: $DBI::errstr\n";
$dbh->rollback(); # dies if rollback fails

} # update store discount

sub adjust_department_discount {

$store_id = int (rand ()* ($INITIAL_STORES-10)) ;
$department_id = int(rand()*$INITIAL_DEPARTMENTS) + 1;

start tran - drops out of eval block on error
eval {

find a valid store id, in case we picked a missing record
$sql = "SELECT MIN(store_id) AS \"STORE_ID\" FROM stores "

. "WHERE store_id > $store_id";
$sth = $dbh->prepare($sql);
$sth->execute ();

www.manaraa.com

160

$rowref = $sth->fetchrow hashref;

%row ;$rowref;
$store_id = $row{STORE_ID} ;
$sth->finish();

$sql = "SELECT count(*) AS \"CNT\" FROM
department_discounts "

. "WHERE store_id = $store_id AND "

. "department_id = $department_id";
$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref ;
%row = %$rowref;
$sth->finish ();

if($row{CNT} == 0) {
create a new record
$d = rand () ;
if($d < 0.5) {

$discount = "0.00";
elsif($d < 0.60) {

$discount = "0.05";
elsif($d < 0.70) {

$discount = "0.10";
elsif($d < 0.80) {

$discount = "0.20";
elsif($d < 0.90) {

$discount = "0.30";
else {

$discount = "0.40";

else

$sql = "INSERT INTO department_discounts '
. "VALUES($store_id, $department_id,
. "$discount)";

$dbh->do($sql);
i {

delete the record
$sql = "DELETE FROM department^discounts '

. "WHERE store_id = $store_id AND "

. "department_id = $department_id";
$dbh->do($sql);

commit tran
$dbh->commit();

};
if($@) {

warn "Database error: $DBI::errstr\n";
$dbh->rollback(); # dies if rollback fails

adjust_department_discount

sub update_volume_discount {

www.manaraa.com

161

start tran - drops out of eval block on error
eval {

if(rand() < 0.5) {
$factor = 0.9;

} else {
$factor = 1.1;

}

Need this to avoid deadlocks
if($dbtype eq "Sybase") {

$dbh->do("BEGIN TRAN");
}
if($dbtype ne "Firebird") {

$dbh->do("LOCK TABLE volume_discounts
$tablelockmode");

}

see if this item's already been rating by this user
if($dbtype eq "Firebird") {

Firebird's locking is nonstandard
$sql = "SELECT * FROM volume_discounts with

lock";
$sth = $dbh->prepare($sql) ;
$sth->execute() ;
$sth->finish();

}

Regenerate the table from scratch to keep the values
reasonable.
$dbh->do("DELETE FROM volume_discounts");

$value = 100 * $factor;
$dbh->do("INSERT INTO volume_discounts

VALUES($value,0.00)");
• .for($i=l;$i<=10;$i++) {

$value = 2 * $value;
$sql = sprintf("INSERT INTO volume_discounts "

. "VALUES(%d,%.2f)", $value, 0.01 * $i);
$dbh->do($sql);

}

commit tran
if($dbtype eq "Sybase") {

$dbh->do("COMMIT TRAN");
}
if($dbtype eq "MySQL") {

$dbh->do("UNLOCK TABLES");
}
$dbh->commit();

};
if($@) {

warn "Database error: $DBI::errstr\n";
if($dbtype eq "Sybase") {

$dbh->do("ROLLBACK TRAN");
}
if($dbtype eq "MySQL") {

www.manaraa.com

162

$dbh->do("UNLOCK TABLES");
}

$dbh->rollback(); # dies if rollback fails
}

} # update volume discount

sub update_shipping {

$sql_increase = "UPDATE shipping "
. "SET shipping_cost = shipping_cost * 1.1";

$sql_decrease = "UPDATE shipping "
. "SET shipping_cost = shipping^cost / 1.1";

start tran - drops out of eval block on error
eval {

if($dbtype eq "Sybase") {
$dbh->do("BEGIN TRAN");

}
if($dbtype ne "Firebird") {

$dbh->do("LOCK TABLE shipping $tablelockmode");

see if this item's already been rating by this user
if($dbtype eq "Firebird") {

Firebird's locking is nonstandard
$sql = "SELECT * FROM shipping with lock";
$sth = $dbh->prepare($sql);
$sth->execute ();
$sth->finish () ;

shipping";

Get the minimum shipping
$sql = "SELECT MIN (shipping_cost) AS \"THE_MIN\" FROM

$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref;
%row = %$rowref;
$sth->finish();

if($row{THE_MIN} < 4.95) {
if it's less than X, increase 10%
$sql = $sql_increase;

} elsif($row{THE_MIN} > 13.95) {
if it's greater than Y, decrease 10%
$sql = $sql_decrease;

} elsif(rand() < 0.5) {
else 50/50 chance
$sql = $sql_increase;

} else {
$sql = $sql_decrease;

Update shipping
$dbh->do($sql);

www.manaraa.com

163

commit tran
if($dbtype eq "Sybase") {

$dbh->do("COMMIT TRAN");
}
if($dbtype eq "MySQL") {

$dbh->do("UNLOCK TABLES");
}
$dbh->commit();

};
if($@) {

warn "Database error: $DBI::errstr\n";
if($dbtype eq "Sybase") {

$dbh->do("ROLLBACK TRAN");
}
if($dbtype eq "MySQL") {

$dbh->do("UNLOCK TABLES");
}
$dbh->rollback(); # dies if rollback fails

update_shipping

#sub update club member^discount() {

$sql_increase = "UPDATE club_members SET discount = discount *
1.1";
$sql__decrease = "UPDATE club_members SET discount = discount /
1.1";

Get the minimum shipping
$sql = "SELECT MAX(discount) AS the_max FROM club_members";
$sth = $dbh->prepare($sql);
$sth->execute ();
$rowref = $sth->fetchrow_hashref; •.
%row = %$rowref;

if ($row{the_max) < 0.12) {
if it's less than X, increase 10%
$sql = $sql_increase;
} elsif($row{the_max} > 0.21) {
if it's greater than Y, decrease 10%
$sql = $sql_decrease;
} elsif(rand() < 0.5) {
else 50/50 chance
$sql = $sql_increase;
} else {
$sql = $sql__decrease;
)
$dbh->commit(); # reduce locks

start tran - drops out of eval block on error
e v a l {
Update s h i p p i n g
$ d b h - > d o ($ s q l) ;

www.manaraa.com

164

commit tran
$dbh->commit() ;
};

if($@) {
warn "Database error: $DBI::errstr\n";
$dbh->rollback(); # dies if rollback fails
}

#} # update_club_member_discount

utility functions

sub get_random_name {

if(rand() < 0.52) {
$first_index = rand() * 43.085;
$first_name = select name($first

\@female_values);
} else {

$first_index = rand() * 59.531;
$first_name = select_name($first

\@male_values);
}
$last_index = rand() * 18.825;

$last_name = select_name($last_index, \@last_names,
\@last_values);

return "\"$first_name\",\"$last_name\"";

} # get_random__name

sub select_name {

my($index, $a, $b) = @_;

@names = @{$a} ;
lvalues = @{$b};

for(my $i = 0; $i < $#names + 1; $i++) {

if($index < $values[$il) {
return $names[$i];

}
}
print "Failed to find name!!\n";

} # select name

index, \@female_names,

index, \@male names,

sub get_random_city {

www.manaraa.com

$zip = sprintf "%05d", int (rand() * 100000);

$index = rand() * 0.400486605;

for(my $i = 0; $i < $#city_names + 1; $i++) {

if($index < $city_values[$i]) {
return "\"$city_names [$i] \" , \"$states [$i] \",

}
}
print "Failed to find a city! How is that possible?!\n"

} # get_random_city

sub generate_phone {

return sprintf("\"%03d-%03d-%04d\"", int (rand() * 700)
int(rand()*1000), int (rand()* 10000));

} # generate_phone

sub generate_address

$house = int (rand() * 10000) + 1,
$street = int (rand() * 150) + 1;
if($street % 10 == 1) {

Sstreet .= "st";
elsif($street % 10 == 2) {

$street .= "nd";
elsif($street % 10 == 3) {

$street .= "rd";
else {

$street .= "th";

$d = int(rand() * 20)+l;
if ($d > 18) {

$dir = "East ";
elsif($d > 16) {

$dir = "West ";
elsif($d > 14) {

$dir = "South ";
elsif($d > 12) {

$dir = "North ";
elsif($d > 11) {

$dir = "NE ";
elsif($d > 10) {

$dir = "NW ";
elsif($d > 9) {

$dir = "SE ";
elsif($d > 8) {

$dir = "SW ";
else {

$dir = "";

www.manaraa.com

$s = int(rand() * 4);
$str = "Road" if $s == 0;
$str = "Street" if $s == 1;
$str = "Avenue" if $s == 2;
$str = "Boulevard" if $s == 3;

return "\"$house dirstreet $str\"";

} # generate_address

sub my_format() {

$d = $_[0];

($sec,$min,$hr,$day,$mon,$yr) = localtime($d);

return sprintf("%02d/%02d/%4d %02d:%02d:%02d", $mon+l, $day,
$yr+1900,

$hr, $min, $sec);

} # my_format

sub load_data {

$INITIAL_CUSTOMERS = 500000;
$INITIAL_ITEMS = 25000;
$INITIAL_STORES = 250;
$INITIAL_DEPARTMENTS = 60;

my $i = 0;
open FILE, "<gen/lOOmale.txt";
while (<FILE>) {

chop;
($male_names[$i], $male_values[$i]) = split 1,1;
$i + + ;

}
close FILE;

$i = 0;
open FILE, "<gen/100female.txt";
while (<FILE>) {

chop;
($female_names[$i], $female_values[$i]) = split 1,1;
$i + + ;

}
close FILE;

$i = 0;
open FILE, "<gen/lOOlastnames.txt";
while (<FILE>) {

chop;
($last_names[$i], $last_values[$i]) = split 1,1;
$i + + ;

www.manaraa.com

167

close FILE;

$i = 0;
open FILE, "<gen/100cities.txt";
while (<FILE>) {

chop;
($city_values[$i], $states[$i], $ci) = split 1,1;
Need to truncate the city names to 20 characters.
$city_names[$i] = substr($ci,0,20);
$i + + ;

}
close FILE;

} # load_data

sub get_oracle_sequence {

$sequence = shift;

$sql = "select $sequence.currval as SEQ from dual";

$sth = $dbh->prepare($sql);
$sth->execute();
$rowref = $sth->fetchrow_hashref();
return $rowref->{'SEQ'};

} # get_oracle_sequence

sub get pg sequence {

$sequence = shift;

$sql = "select currval('$sequence') as \"SEQ\"";

$sth = $dbh->prepare($sql);
$sth->execute.() ;
$rowref = $sth->fetchrow_hashref();
return $rowref->{'SEQ'};

} # get_pg_sequence

sub get_firebird_sequence {

$sequence = shift;

$sql = "select gen_id($sequence, 0) as GENID from rdb\$database";

$sth = $dbh->prepare($sql) ;
$sth->execute();
$rowref = $sth->fetchrow_hashref();
return $rowref->{'GENID'};

} # get firebird sequence

sub get_db2_last_insert_id (

www.manaraa.com

$sql = "select identity_val_local() as LASTVAL f
sysibm.sysdummyl";

$sth = $dbh->prepare($sql);
$sth->execute();
$ref = $sth->fetchrow_hashref();
return $ref->{'LASTVAL'};

} # get_db2_last_insert_id

sub db2_convert_date {
$old_date = shift;
return "null" if $old_date eq ' ' ;

$old_date =~ /"(.*)"/; # strip quotes
$old_date = $1;
my ($mon, $day, $yr, $hr, $min, $sec);
my @p = split / /, $old_date;
($mon, $day, $yr) = split l\lI, $p[0];
($hr, $min, $sec) = split /:/, $p[l];
return sprintf("\"%d-%02d-%02d %02d:%02d:%02d\""

$day,
$hr, $min, $sec);

} # db2 convert date

Change the quotes and escapes if necessary.

sub fix_quotes {

my $str = shift;

switch($dbtype) {
case "MySQL" { } # No changes needed,
case "Oracle" { # Change ' to '' and " to

$str =~ s/'/''/g;
$str =~ s/'V'/g;

}
case "DB2" { # Change ' to '' and " to '.

$str =~ s/'/''/g;
$str = ~ s/'V'/g;

}
case "Postgresql" { # Change ' to '' and "

$str =~ s/'/''/g;
$str =~ s/'V'/g;

}
case "Sybase" { # Change ' to '' and " to

$str =~ s/'/''/g;
$str =~ s/"/'/g;

}
case "Firebird" { # Change ' to '' and " t

$str =~ s/'/''/g;
$str =~ s/'V'/g;

}
default { die "DBD $dbtype not found."; }

}
return $str;

www.manaraa.com

169

} # fix_quotes

www.manaraa.com

170

Appendix O:

Benchmark Script for Report Generation

#!/usr/bin/perl -w

reportb.pl - run report queries in parallel as part of the benchmark
case

$dbtype =
#$dbtype
#$dbtype
#$dbtype
#$dbtype
#$dbtype

= "DB2";
= "MySQL";
= "Firebird";
= "Oracle";
= "Postgresql";
= "Sybase";

use Time::HiRes qw(gettimeofday tv_interval); # High resolution
timing
use Time::Local; # reverse of localtime
use Switch; # For switch/case statements
use DBI; # General database interface
use DBD::DB2; # DB2 specific interface
use DBD::DB2::Constants; # more for DB2
fuse DBD::mysql; # MySQL specific interface
#use DBD::InterBase; # Firebird specific interface
fuse DBD::0racle; # Oracle specific interface
fuse DBD::Pg; # Postgresql specific interface
fuse DBD::Sybase; # Sybase specific interface

$1 = 1;

our($debug);
$debug = 0;

our($dbh, $dsn);

switch($dbtype) {
case "DB2" {

$dsn = "dbi
$db_user=""
$db_pass=""

DB2:bench";

case "Firebird" {
$dsn =

"DBI:InterBase:db=/opt/firebird/bench.fdb;ib_dialect=3";
$db_user="bench";
$db pass="bench";

}
case "MySQL" {

$dsn = "DBI:mysql:database=bench;host=localhost;port=3306";
$db_user="bench_user";
$db_pass="bench1";

}
case "Oracle" {

$dsn = "DBI:Oracle:";

http://reportb.pl

www.manaraa.com

171

$db_user="bench";
$db_pass="bench";

}
case "Postgresql" {

$dsn = "DBI:Pg:";
$db__user="bench";
$db_pass="bench";

}
case "Sybase" {

$dsn = "DBI:Sybase:server=VADER";
$db_user="bench";
$db_pass="benchpw";

}
default { die "DBD $dbtype not found."; }

}

our($n_children, $query_end_date, @query_start_date);
$n_children = 20; # 20 processes, 1 per report
$query_end_date = fix_one_date ("V'l/2/2008 0:00:00\"");
$query_start_date[l] = fix_one_date("\"l/l/2008 0:00:00\"");
$query_start_date[2] = fix_one_date("\"12/1/2007 0:00:00\"");
$query_start_date[3] = fix_one_date("\"1/1/2007 0:00:00V") ;

delete these
our(@male_names, @male_values, @female_names, @female_values,
@last_names,

@last_values, @city_names, @city_values, @states);
our ($INITIAL_CUSTOMERS, $INITIAL_TRANSACTIONS, $INITIAL_ITEMS,

$INITIAL_STORES, $INITIAL__DEPARTMENTS) ;

$start_time = [gettimeofday]; # Start timer

Run each child process in its own thread, for parallelism.

for ($child__no=0; $child_no < $n_children; $child_no++) {

$pid = fork();
if($pid == 0) { # in the child

start timer
$report_start_time = [gettimeofday];

Login and create database handler

$dbh = DBI->connect ($dsn, $db_user, $db__pass,

{PrintError => 1, RaiseError => 1, AutoCommit => 0̂
or die "Database connection failed: $DBI::errstr";

if($dbtype eq "Oracle") {
$dbh->do("alter session set " .

"nls_date_format='mm/dd/yyyy hh24:mi:ss'");

$dbh->commit();
}

switch ($child_no) {
case 0 {

($report_file, $buffer) = store_profits (1);
}

www.manaraa.com

case 1 {
($report file,

case 2

case 3

case 4

case 5

case 6

case 7

case 8

case 9

case 1

case 1

case 12

case 1

case 14

case 1

case 1

case 17

case 1

case 1

$buffer) = store_profits(2)

{
$report_file, $buffer) = store_profits(3);

{
$report_file, $buffer) = state__items (1) ;

{
$report_file, $buffer)

{
$buffer) _

$buffer) = department_revenues(1)

$report_file,

{
$report file,

state_items(2);

state items(3);

$report_file, $buffer) = department_revenues (2);

{
$report__file, $buffer) = department_revenues (3) ;

{
$report_file, $buffer) = most_popular_items();

{
$report_file, $buffer) = most_profitable_items();

{
$report_file, $buffer)

{
$report file, $buffer)

state customers(1)

state customers(2)

{
$report file, $buffer) = state customers(3);

{
$report_file, $buffer) = city_customers(1);

{
$report_file, $buffer) = city_customers(2);

{
$report_file, $buffer) = city_customers(3);

{
$report_file, $buffer)

{
$report_file, $buffer)

{
$report file, $buffer)

top_customers(1);

top_customers(2);

top customers (3) ;

www.manaraa.com

default {
print "Shouldn't be in the default case.Xn";
exit(-l);
}

} # switch

end timer
$report_elapsed_time = tv_interval($report_start_time);
print "child $child_no elapsed time:

$report_elapsed_time\n" ;
open FILE, ">reports/$report_file";
print FILE $buffer;
close FILE;

end the child
exit (0);

} # if in the child
} # for each report

$children_done = 0;
$child = 0";
while ($child != -1) {

$child = wait(); # Returns -1 when no more children waiting.
if($child != -1) {

$children done++;

$elapsed_time = tv_interval($start_time); # End timer

print "$children_done finished $elapsed_time sec.Xn";

End of script. • .

Convert date to DB2 format.

sub db2_convert_date {

$old_date = shift;
$old__date = ~ m|"(\d+)/(\d+)/(\d+) (\S+)"|;
return "'$3-$l-$2 $4'";

Convert date to Firebird format.

sub firebird_convert_date {

$old_date = shift;
$old__date =~ m| "(.*)" I ;
return "'$1'"; # Just swap quotes for Firebird.

}

www.manaraa.com

Convert date to MySQL format.

sub mysql_convert_date {

$old_date = shift;
$old_date =~ m|"(\d+)/(\d+)/(\d+) (\S+)"I;
return "\"$3-$l-$2 $4\"";

}

Convert date to Oracle format.

sub oracle_convert_date {

$old_date = shift;
$old_date =~ m|"(.*)"|;
return "'$1'"; # Just swap quotes for Oracle.

We used the nls date format to tell Oracle the date format.

Convert date to Postgresql format.

sub pg_convert_date {

$old_date = shift;
$old~date =~ m|"(.*)"I;
return "'$1'"; # Just swap quotes for Postgresql

}

Convert date to Sybase format.

sub sybase_convert_date {

$old_date = shift;
return $old_date; # do nothing for Sybase.

}

Identify which columns need date conversion and fix them.

sub fix_dates {

my @cols = split /,/, shift;
my @nums = split /,/, shift;
switch ($dbtype) {

case "DB2" {
foreach $key (@nums) {

$cols[$key] = db2_convert_date($cols[$key]) ;
}

}
case "Firebird" {

foreach $key (@nums) {
$cols[$key] =

firebird_convert_date($cols[$key]) ;
}

}
case "MySQL" {

foreach $key (@nums) {
$cols[$key] = mysql_convert_date($cols[$key])

}

www.manaraa.com

175

}
case "Oracle" {

foreach $key (@nums) {
$cols[$key] = oracle_convert__date ($cols [$key]) ;

}
}
case "Postgresql" {

foreach $key (@nums) {
$cols[$key] = pg_convert_date($cols[$key]);

}
}
case "Sybase" {

foreach $key (@nums) {
$cols[$key] = sybase_convert__date ($cols [$key]) ;

}
}
default { die "DBD $dbtype"; }

}
return(join ",", @cols);

sub fix_one_date {
$date = shift;
switch($dbtype) {

case "DB2" {
return db2_convert_date($date);

}
case "Firebird" {

return firebird_convert_date($date);
}
case "MySQL" {

return mysql_convert_date($date);
}
case "Oracle" {

return oracle_convert_date($date);
}
case "Postgresql" {

return pg_convert_date($date);

case "Sybase" {
return sybase_convert_date($date);

}
default { die "DBD $dbtype"; }

fix one-date'

sub store_profits {
$report no = shift;

$sum club member qty = "sum (club__member qty)";
if($dbtype eq "Sybase" or $dbtype eq "Firebird" or $dbtype eq

"DB2") {
$sum_club_member_qty = "(1.0 * sum(club_member_qty))";

}
if($dbtype eq "Postgresql") {

www.manaraa.com

$sum_club_member_qty = "float4(sum(club_member_qty))";
}
$sql = "

SELECT
store_id as \"STORE_ID\", store_name as \"STORE_NAME\",
sum(profit) as \"TOTAL_PROFIT\",
sum(quantity) as \"N_ITEMS\", sum(qty_weight) as

\"TOTAL_WEIGHT\",
$sum_club_member__qty / sum(quantity) as \"MEMBER_PCT\"

FROM (
SELECT

s.store_id, s.store_name,
ti.discounted_price -

(i.wholesale_price * ti.quantity) as profit,
ti.quantity, ti.quantity ' * i.weight as qty_weight,
case when cm.customer_id is null then 0 else ti.quantity

end as club_member_qty
FROM transactions t
JOIN transaction_items ti ON (t.transaction_id =

ti.transaction_id)
JOIN items i ON (ti.item_id = i.item_id)
JOIN store_inventories si ON (t.store_id = si.store_id

AND ti.item_id = si.item_id)
JOIN stores s ON (si.store_id = s.store_id)
JOIN customer_accounts ca ON (t.customer_id = ca.customer_id)
LEFT JOIN club_members cm ON (ca.customer_id = cm.customer_id)
WHERE ~~ ~

t.tran_date < $query_end_date
and t.tran_date >= $query_start_date[$report_no]

) subl
GROUP BY

store^id, store_name
ORDER BY ~

sum(profit) desc

$sth = $dbh->prepare($sql);
$sth->execute();
$filename = "store_profits " . $report no . ".out";
$buffer = "";
while ($rowref = $sth->fetchrow_hashref) {

%row = %$rowref;
$buffer .= "$row{STORE_ID},$row{STORE_NAME},"

. "$row{TOTAL_PROFIT},$row{N_ITEMS},"

. "$row{TOTAL_WEIGHT},$row{MEMBER_PCT}\n";
}
print "Running store profits $report_no\n";
return ($filename, $buffer);

} # store_profits

sub state items {
$report_no = shift;

$sql = "
SELECT

cr. state as \"STATE\", sum(ti.quantity) as \"N0 ITEMS\",

www.manaraa.com

sum(t.total_weight) as \"TOTAL_WEIGHT\",
sum(t.shipping_cost) as \"TOTAL_SHIPPING_COST\"

FROM transactions t
JOIN transaction__items ti ON (t.transaction_id = ti.transaction_id)
JOIN customer___accounts ca ON (t. customer_id = ca .customer_id)
JOIN customer_addresses cr ON (ca.customer_id = cr.customer_id AND

ca.current_address = cr.sequence_number)
WHERE

t.tran_date < $query_end_date
and t.tran_date >= $query_start_date[$report_no]

GROUP BY
state

II .

r

$sth = $dbh->prepare($sql);
$sth->execute();
$filename = "state_items_" . $report_no . ".out";
$buffer = "";
while($rowref = $sth->fetchrow_hashref) {

%row = %$rowref;
$buffer .= "$row{STATE},$row{NO_ITEMS},"

. "$row{TOTAL_WEIGHT},$row{TOTAL_SHIPPING_COST}\n
}
print "Running state items $report_no\n";
return ($filename, $buffer);

} # state items

sub department_revenues {
$report_no = shift;

$sql = "
SELECT

department_id as \"DEPARTMENT_ID\", name as \"NAME\",
sum(subtotal_revenue) as \"TOTAL_REVENUE\",
sum(sub_no_items) as \"NO_ITEMS\", count(store_id) as

\"NO_STORES\"
FROM (

SELECT
d.department id, d.name,
sum(ti.discounted price) as subtotal_revenue,
sum(ti.quantity) as sub_no_items, t.store_id

FROM transactions t
JOIN transaction_iterns ti ON (t.transaction_id =

ti.transaction_id)
JOIN items i ON (ti.item_id = i.item_id)
JOIN departments d ON (i.department id = d.department id)
WHERE

t.tran_date < $query_end_date
AND t.tran_date >= $query_start_date[$report_no]

GROUP BY d. department__id, d.name, t.store_id
) subl
GROUP BY

department id, name

$sth = $dbh->prepare($sql);
$sth->execute();

www.manaraa.com

$filename = "department_revenues_" . $report_no . ".out
$buffer = "";
while($rowref = $sth->fetchrow_hashref) {

%row = %$rowref;
$buffer .= "$row{DEPARTMENT_ID},$row{NAME},"

. "$row{TOTAL_REVENUE},$row{NO_ITEMS},"

. "$row{NO_STORES}\n";
}
print "Running department revenues $report_no\n";
return($filename, $buffer);

} # department_revenues

sub most popular items {

switch($dbtype) {
case "DB2" {

$sql = "
SELECT

i.item_id as \"ITEM_ID\", i.name as \"NAME\",
sum(ti.quantity) as \"TOTAL_QUANTITY\"

FROM transaction_items ti
JOIN items i ON (ti.item_id = i.item_id)
JOIN transactions t ON (ti.transaction_id = t.transaction_id)
WHERE

t.tran_date < $query__end_date
AND t.tran_date >= $query_start_date[3]

GROUP BY
i.item_id, i.name

ORDER BY
sum(ti.quantity) desc

FETCH FIRST 100 ROWS ONLY

}
• . case "Firebird" {

$sql = "
SELECT FIRST 100

i.item_id as \"ITEM_ID\", i.name as \"NAME\",
sum(ti.quantity) as \"TOTAL_QUANTITY\"

FROM transaction_items ti
JOIN items i ON (ti.item_id = i.itern^id)
JOIN transactions t ON (ti.transaction_id = t.transaction_id)
WHERE ~ ~~

t.tran date < $query_end date
AND t.tran_date >= $query_start_date[3]

GROUP BY
i.item_id, i.name

ORDER BY
sum(ti.quantity) desc

it .

}
case "MySQL" {

$sql = "
SELECT

i.item_id as \"ITEM_ID\", i.name as \"NAME\",
sum(ti.quantity) as \"TOTAL QUANTITY\"

www.manaraa.com

179

FROM transaction_items ti
JOIN items i ON (ti.item_id = i.item_id)
JOIN transactions t ON (ti.transaction__id = t.transaction_id)
WHERE

t.tran_date < $query_end_date
AND t.tran_date >= $query_start_date[3]

GROUP BY
i.item_id, i.name

ORDER BY
sum(ti.quantity) desc

LIMIT 100

}
case "Oracle" {

$sql = "
SELECT \"ITEM_ID\", \"NAME\", \"TOTAL_QUANTITY\" FROM (
SELECT

i.item_id as \"ITEM_ID\", i.name as \"NAME\",
sum(ti.quantity) as \"TOTAL_QUANTITY\"

FROM transaction_items ti
JOIN items i ON (ti.item_id = i.item_id)
JOIN transactions t ON (ti.transaction_id = t.transaction_id)
WHERE

t.tran_date < $query_end_date
AND t.tran date >= $query start date[3]

GROUP BY
i.item id, i.name

ORDER BY
sum(ti.quantity) desc

) WHERE ROWNUM <= 100
It .

}
case "Postgresql" {

$sql = "
SELECT

i.item_id as \"ITEM_ID\", i.name as \"NAME\",
sum(ti.quantity) as \"TOTAL_QUANTITY\"

FROM transaction items ti
JOIN items i ON (ti.item_id = i.item_id)
JOIN transactions t ON (ti.transaction id = t.transaction id)
WHERE

t.tran_date < $query_end_date
AND t.tran_date >= $query_start_date[3]

GROUP BY
i.item_id, i.name

ORDER BY
sum(ti.quantity) desc

LIMIT 100

}
case "Sybase" {

$sql = "
SET ROWCOUNT 100
SELECT

i.item_id as \"ITEM_ID\", i.name as \"NAME\",
sum(ti.quantity) as \"TOTAL_QUANTITY\"

FROM transaction items ti

www.manaraa.com

JOIN items i ON (ti.item_id = i.item_id)
JOIN transactions t ON (ti.transaction_id = t.transaction
WHERE

t.tran_date < $query_end_date
AND t.tran_date >= $query_start_date[3]

GROUP BY
i.item_id, i.name

ORDER BY
sum(ti.quantity) desc

SET ROWCOUNT 0

}
default { die "unknown dbtype: $dbtype"; }

} # end switch

$sth = $dbh->prepare($sql);
$sth->execute();
$filename = "most_popular_items.out";
$buffer = "";
while($rowref = $sth->fetchrow hashref) {

%row = %$rowref;
$buffer .= "$row{ITEM_ID},$row{NAME},"

. "$row{TOTAL_QUANTITY}\n";
}
print "Running most popular items\n";
return($filename, $buffer);

} # most_popular_items

sub most_profitable_iterns {

switch($dbtype) {
case "DB2" {

$sql = "
SELECT

i.item_id as \"ITEM_ID\", i.name as \"NAME\",
sum(ti.discounted_price -

(i.wholesale_price * ti.quantity)) as V'TOTAL
FROM transaction_items ti
JOIN items i ON (ti.item_id = i.item_id)
JOIN transactions t ON (ti.transaction_id = t.transaction
WHERE

t. tran___date < $query_end_date
AND t.tran_date >= $query_start_date[3]

GROUP BY ~
i.item_id, i.name

ORDER BY
sum (ti .discounted__price -

(i.wholesale_price * ti.quantity)) desc
FETCH FIRST 100 ROWS ONLY

}
case "Firebird" {

$sql = "
SELECT FIRST 100

i.item id as \"ITEM ID\", i.name as \"NAME\",

www.manaraa.com

181

sum(ti.discounted_price -
(i.wholesale_price * ti.quantity)) as \"TOTAL_PROFIT\"

FROM transaction_items ti
JOIN items i ON (ti.item_id = i.item_id)
JOIN transactions t ON (ti.transaction_id = t.transaction_id)
WHERE

t.tran_date < $query_end_date
AND t.tran_date >= $query_start_date[3]

GROUP BY
i.item_id, i.name

ORDER BY
sum(ti.discounted_price -

(i.wholesale_price * ti.quantity)) desc
M .

}
case "MySQL" {

$sql = "
SELECT

i.item_id as \"ITEM_ID\", i.name as \"NAME\",
sum(ti.discounted_price -

(i.wholesale_price * ti.quantity)) as \"TOTAL_PROFIT\"
FROM transaction_items ti
JOIN items i ON (ti.item_id = i.item_id)
JOIN transactions t ON (ti.transaction_id = t.transaction_id)
WHERE

t.tran_date < $query_end_date
AND t.tran_date >= $query_start_date[3]

GROUP BY
i.item_id, i.name

ORDER BY
sum(ti.discounted^price -

(i.wholesale_price * ti.quantity)) desc
LIMIT 100

}
case "Oracle" {

$sql = "
SELECT \"ITEM_ID\", \"NAME\", \"TOTAL_PROFIT\" FROM (
SELECT

i.item_id as \"ITEM_ID\", i.name as \"NAME\",
sum(ti.discounted_price -

(i.wholesale^price * ti.quantity)) as \"TOTAL_PROFIT\"
FROM transaction_items ti
JOIN items i ON (ti.item_id = i.item_id)
JOIN transactions t ON (ti.transaction_id = t.transaction_id)
WHERE

t.tran_date < $query_end_date
AND t.tran_date >= $query_start_date[3]

GROUP BY
i.item_id, i.name

ORDER BY
sum (ti.discounted^price -

(i.wholesale_price * ti.quantity)) desc
) WHERE ROWNUM <= 100

}
case "Postgresql" {

www.manaraa.com

182

$sql = "
SELECT

i.item_id as \"ITEM_ID\", i.name as \"NAME\",
sum(ti.discounted_price -

(i.wholesaleprice * ti.quantity)) as \"TOTAL_PROFIT\"
FROM transaction_items ti
JOIN items i ON (ti.item_id = i.item^id)
JOIN transactions t ON (ti.transaction_id = t.transaction_id)
WHERE

t.tran_date < $query_end__date
AND t.tran_date >= $query_start_date[3]

GROUP BY
i.item_id, i.name

ORDER BY
sum(ti.discounted_price -

(i.wholesale_price * ti.quantity)) desc
LIMIT 100

}
case "Sybase" {

$sql = "
SET ROWCOUNT 100
SELECT

i.item^id as \"ITEM_ID\", i.name as \"NAME\",
sum(ti.discounted_price -

(i.wholesaleprice * ti.quantity)) as \"TOTAL_PROFIT\"
FROM transaction items ti
JOIN items i ON (ti.item_id = i.item_id)
JOIN transactions t ON (ti.transaction_id = t.transaction_id)
WHERE

t.tran__date < $query_end_date
AND t.tran_date >= $query_start_date[3]

GROUP BY
i.item_id, i.name

ORDER BY
sum(ti.discounted_price -

(i.wholesale_price * ti.quantity)) desc
SET ROWCOUNT 0

default { die "unknown dbtype: $dbtype";
) # end switch

$sth = $dbh->prepare($sql);
$sth->execute();
$filename = "most_profitable_items.out";
$buffer = "";
while($rowref = $sth->fetchrow_hashref) {

%row = %$rowref;
$buffer .= "$row{ITEM_ID},$row{NAME},"

. "$row{TOTAL PROFIT}\n";

print "Running most profitable items\n";
return ($filename, $buffer);

} # most_profitable_items

www.manaraa.com

183

sub state_customers {
$report no = shift;

$sql = "
SELECT

state as \"STATE\", count(*) as \"NO_CUSTOMERS\"
FROM transactions t
JOIN customer_accounts ca ON (t.customer_id = ca.customer_id)
JOIN customer_addresses cr ON (ca.customer_id = cr.customer__id AND

ca.current_address = cr.sequence_number)
WHERE

t.trandate < $query_end_date
AND t.tran_date >= $query_start_date[$report_no]

GROUP BY
state

ORDER BY
count(*) desc

$sth = $dbh->prepare($sql);
$sth->execute();
$filename = "state_customers_" . $report_no . ".out";
$buffer = "";
while($rowref = $sth->fetchrow_hashref) {

%row = %$rowref;
$buffer .= "$row{STATE},$row{NO_CUSTOMERS}\n";

}
print "Running state customers $report_no\n";
return($filename, $buffer);

} # state customers

sub city_customers {
$report_no = shift;

$sql = "
SELECT

city as \"CITY\", state as \"STATE\", count(*) as
\"NO_CUSTOMERS\"
FROM transactions t
JOIN customer_accounts ca ON (t.customer_id = ca.customer_id)
JOIN customer^addresses cr ON (ca.customer_id = cr.customer_id AND

ca.current_address = cr.sequence_number)
WHERE

t.tran_date < $query_end_date
AND t. tran^date >= $query__start_date [$ report_no]

GROUP BY
state, city

ORDER BY
count(*) desc

$sth = $dbh->prepare($sql);
$sth->execute();
$filename = "city_customers_" . $report_no . ".out";
$buffer = "";
$count = 0;

www.manaraa.com

1

while($rowref = $sth->fetchrow_hashref) {
%row = %$rowref;
$buffer .= "$row{CITY},$row{STATE},$row{NO_CUSTOMERS}\n";
$count++;
last if($count == 100);

}
print "Running city customers $report_no\n";
return($filename, $buffer);

} # city customers

sub top_customers {
$report_no = shift;

$sql = "
SELECT

ca.customer_id as \"CUSTOMER_ID\", first_name as \"FIRST_NAME\",
last_name as \"LAST_NAME\", city as \"CITY\", state as \"STATE\"
sum(total) as \"TOTAL_SPENT\"

FROM transactions t
JOIN customer_accounts ca ON (t.customer_id = ca.customer_id)
JOIN customer_addresses cr ON (ca.customer_id = cr.customer_id AND

ca.current_address = cr.sequence_number)
WHERE

t.tran date < $query_end_date
AND t.tran_date >= $query_start_date[$report_no]

GROUP BY
ca.customer_id, first_name, last_name, city, state

ORDER BY
sum(total) desc

$sth = $dbh->prepare($sql);
$sth->execute();
$filename = "top customers_" . $report no . ".out";
$buffer •= "";
while($rowref = $sth->fetchrow^hashref) {

%row = %$rowref;
$buffer .= "$row{CUSTOMER_ID},$row{FIRST_NAME},"

. "$row{LAST_NAME},$row{CITY},"

. "$row{STATE},$row{TOTAL_SPENT}\n";
$count++;
last if($count == 100);

}
print "Running top customers $report_no\n";
return($filename, $buffer);

} # top customers

